Skip to content

Latest commit

 

History

History
114 lines (85 loc) · 3.44 KB

README.md

File metadata and controls

114 lines (85 loc) · 3.44 KB

Pyspark-tutorial

How to use spark using python by Colab or Docker

| Pyspark을 사용하며 실습 환경은 Google Colab과 개인컴퓨터에서 설치하는 Spark standalone 모드의 Spark입니다.

2023.07 (Docker)

  • docker를 이용한 spark 설치
    • root 경로에서 docker compose up 실행
      .
      ├── 0.Set-up
      ├── 1.Pyspark-tutorial
      ├── 2.RDD, Dataframe
      ├── 3.Spark_SQL
      ├── 4.Spark_ML
      ├── Dockerfile ## here
      ├── README.md
      ├── docker-compose.yml ## here
      ├── hadoop
      └── spark
      
      
    • 만약 필요한 jdbc 드라이버가 존재한다면 /usr/local/spark-3.3.1-bin-hadoop3/jars 경로에 넣어주면 됩니다. (Dockerfile에 작성 요망)
      RUN cd /usr/local/spark-3.3.1-bin-hadoop3/jars && \
        if ! wget -P /usr/local/spark-3.3.1-bin-hadoop3/jars https://s3.amazonaws.com/redshift-downloads/drivers/jdbc/2.1.0.14/redshift-jdbc42-2.1.0.14.jar; then \
            echo "Failed to download Redshift JDBC driver"; \
        fi
      

2023.03.01 (Colab)

  • colab 내 java의 버젼 : 11.0.17
    openjdk version "11.0.17" 2022-10-18
    OpenJDK Runtime Environment (build 11.0.17+8-post-Ubuntu-1ubuntu220.04)
    OpenJDK 64-Bit Server VM (build 11.0.17+8-post-Ubuntu-1ubuntu220.04, mixed mode,  sharing)
    
  • spark 3.3.1이 위의 버젼과 호환이 가능해짐
  • 다음과 같이 설정이 바뀜
!pip install pyspark==3.3.1 py4j==0.10.9.5 
!pip install -q findspark

import findspark
findspark.init()

from pyspark.sql import SparkSession
from pyspark import SparkConf

conf = SparkConf()
conf.set("spark.app.name", "logistic-regression")
conf.set("spark.master", "local[*]")

# Singleton pattern
spark = SparkSession.builder\
        .config(conf=conf)\
        .getOrCreate()

# csv read to dataframe
df = spark.read.format("text").load("1800.csv")

2023 이전

  • Spark Version

    • spark-3.3.1
    • hadoop2
    • JAVA : openjdk 1.8.0_352
  • Pyspark was run in colab and practiced.

  • colab 내부에 아래의 코드를 통해 spark 실습 환경을 구성한 후 spark context 및 session을 구동시켜야합니다.

    • Within the colab, you must configure the spark practice environment using the code below before running the spark context and session.
  • need to update-alternatives (Java 버젼 세팅 , Java Version Settings)

    • openjdk version "1.8.0_352"
      • (OpenJDK Runtime Environment (build 1.8.0_352-8u352-ga-1~20.04-b08))
!apt-get install openjdk-8-jdk-headless -qq > /dev/null
!wget -q https://downloads.apache.org/spark/spark-3.3.1/spark-3.3.1-bin-hadoop2.tgz
!tar -xvf spark-3.3.1-bin-hadoop2.tgz
!pip install -q findspark
!pip install pyspark

import os
os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
os.environ["SPARK_HOME"] = "/content/spark-3.3.1-bin-hadoop2"

# need to update-alternatives => openjdk version "1.8.0_352"
!update-alternatives --set java /usr/lib/jvm/java-8-openjdk-amd64/jre/bin/java
!java -version

import findspark
findspark.init()

from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("spark3_test").master("local[*]").getOrCreate()

import pyspark

# sc object generation
from pyspark import SparkContext, SparkConf

conf = SparkConf().setMaster("local").setAppName("myfriend")
sc = SparkContext.getOrCreate(conf=conf)