forked from emntn/faiss-api
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
102 lines (85 loc) · 3.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from fastapi import FastAPI
from sentence_transformers import SentenceTransformer
import faiss
import json
import mmap_index
import sys
import transformers
class Config:
def __init__(self, tokenizer, model, faiss_index, mmap, gpu=False):
self.index = faiss.read_index(faiss_index)
self.index.nprobe = 12
tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer)
self.model = SentenceTransformer(model).eval()
if gpu:
res = faiss.StandardGpuResources()
self.index = faiss.index_cpu_to_gpu(res, 0, self.index)
self.model = self.model.cuda()
self.mmidx = mmap_index.Qry(mmap)
def embed(self, sentlist, limit=15):
print("Starting encoding", file=sys.stderr, flush=True)
emb = self.model.encode(sentlist)
print("Starting index search", file=sys.stderr, flush=True)
W, I = self.index.search(emb, limit)
print("Done index search", file=sys.stderr, flush=True)
return W, I
def knn(self, sentlist, limit=15):
res = []
W, I = self.embed(sentlist, limit)
for sent, ws, nns in zip(sentlist, W, I):
sent_res = []
for w, nn in zip(ws, nns):
nn_sent = self.mmidx.get(nn)
sent_res.append((w, nn_sent))
res.append((sent, sent_res))
return res
app = FastAPI()
tokenizer = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
model = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
mmap = "/mnt/ssd/faiss_data/mmap/all_data_pos_uniq"
faiss_index = "/mnt/ssd/faiss_data/faiss_index_filled_sbert.faiss"
search = Config(tokenizer, model, faiss_index, mmap)
search.knn(["Startup"], 15) # Initialize the index
print("Done loading", file=sys.stderr, flush=True)
@app.get("/")
def read_root():
return {"Hello": "World"}
@app.get("/{query}")
def base_search(query: str, limit=15):
res = search.knn([query], int(limit))
results = []
for sent, hits in res:
for score, h in hits:
score = round(1-(score**2)/100, 3)
certainty = {"certainty": score}
result = json.loads(h)
result["id"] = result["id"].replace(".headed", "")
result.update(certainty)
results.append(result)
return results
@app.get("/v2/l={limit}&q={query}")
async def get_results(query: str, limit: int = 15):
res = search.knn([query], limit)
results = []
for sent, hits in res:
for score, h in hits:
score = round(1-(score**2)/100, 3)
certainty = {"certainty": score}
result = json.loads(h)
result["id"] = result["id"].replace(".headed", "")
result.update(certainty)
results.append(result)
return results
@app.get("/v2/")
async def get_results(q: str, l: int = 15):
res = search.knn([q], l)
results = []
for sent, hits in res:
for score, h in hits:
score = round(1-(score**2)/100, 3)
certainty = {"certainty": score}
result = json.loads(h)
result["id"] = result["id"].replace(".headed", "")
result.update(certainty)
results.append(result)
return results