-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathHCP_synthetic_data.py
422 lines (333 loc) · 15.3 KB
/
HCP_synthetic_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import os
import copy
import math
import random
import pickle
import shutil
import numpy as np
import itertools
# Total number of sequence required in DB
# pattern number divided by pattern in sequence
## Random create method pool using elements from 1 to 10000 with specified amount
def method_pool(methodUniqueAmount, seed):
random.seed(seed)
np.random.seed(seed)
methodPool = random.sample(range(1,methodUniqueAmount+1),methodUniqueAmount)
return methodPool
def phase_pool(methodPool, methodNumInPhase_mu, methodNumInPhase_sigma, phaseUniqueAmount,seed):
np.random.seed(seed)
methodNormNum = np.random.normal(methodNumInPhase_mu,methodNumInPhase_sigma,phaseUniqueAmount)
methodNormInt = np.round(methodNormNum).astype(int)
## Create phaseSet with all the unique phase
phaseSet = []
for i in range(0,len(methodNormInt)):
if i == 0:
methodBegin = 0
methodEnd = methodNormInt[i]
if i > 0:
methodBegin = methodSum
methodEnd = methodSum + methodNormInt[i] ## the ith elements
methodSum = methodEnd
phase_i = set(methodPool[methodBegin:methodEnd])
phaseSet.append(phase_i)
## Random create the phase repeated times and number
phaseNormNum = np.random.normal(phaseRep_mu,phaseRep_sigma,len(methodNormInt))
phaseNormInt = np.round(phaseNormNum).astype(int)
## Create phasePool with repeated unique phases
phasePool = []
for j in range(0,len(phaseNormInt)):
for k in range(0,phaseNormInt[j]):
phasePool.append(phaseSet[j])
return (phasePool, phaseNormInt)
def pattern_pool_phase_id(phasePool, phaseNormInt, patternNum_mu, patternNum_sigma, patternUniqueAmount,seed):
random.seed(seed)
phaseOrder = random.sample(range(0,phaseNormInt.sum()),phaseNormInt.sum())
np.random.seed(seed)
patternNormNum = np.random.normal(patternNum_mu,patternNum_sigma,patternUniqueAmount)
patternNormInt = np.round(patternNormNum).astype(int)
# Create pattern set in terms of phase id
patternSet_phaseId = []
# pattern = []
patternSum = 0
for i in range(0,len(patternNormInt)):
if i == 0:
patternBegin = 0
patternEnd = patternNormInt[i]
if i > 0:
patternBegin = patternSum
patternEnd = patternSum + patternNormInt[i] ## the ith elements
patternSum = patternEnd
pattern_i = phaseOrder[patternBegin:patternEnd]
patternSet_phaseId.append(pattern_i)
return patternSet_phaseId
def pattern_pool(patternSet_phaseID, phasePool, patternRep_mu, patternRep_sigma, length_of_patternSet, seed):
## Represent pattern set in terms of phase
patternSet = copy.deepcopy(patternSet_phaseID)
# patternSet = patternSet_phaseID
for i, row in enumerate(patternSet):
for j,cell in enumerate(row):
location = patternSet[i][j]
patternSet[i][j] = phasePool[location]
## Create pattern pool by repeating phases
patternPool = []
pattern_temp = []
np.random.seed(seed)
patternRepNum = np.random.normal(patternRep_mu,patternRep_sigma,len(patternSet))
patternRepInt = np.round(patternRepNum).astype(int)
for j in range(0,len(patternRepInt)):
for k in range(0,patternRepInt[j]):
patternPool.append(patternSet[j])
pattern_temp.append(j)
return (patternSet, pattern_temp)
# pattern_set,pattern_no,patternInSeq_mu,patternInSeq_sigma,phase,sequence_number_in_db,seed
def sequenceDB_and_dict(patternSet,pattern_temp,patternInSeq_mu,patternInSeq_sigma,phase_set,sequence_in_db,seed,noise_ratio=0):
## Randomize pattern pool order
random.seed(seed)
# patternOrder = random.sample(range(0,patternRepInt.sum()),patternRepInt.sum())
## Randomize number of patterns in sequence by Norm dist
np.random.seed(seed)
seqNormNum = np.random.normal(patternInSeq_mu,patternInSeq_sigma,sequence_in_db-1)
seqNormInt = list(np.round(seqNormNum).astype(int))
diff = len(pattern_temp) - sum(seqNormInt)
if diff < 0:
pattern_temp += random.choices(range(len(patternSet)), k=-diff)
if diff > 0:
seqNormInt.append(len(pattern_temp) - sum(seqNormInt))
## Create dictionary for groundtruth
pattern_index = list(range(0, len(patternSet)))
pattern_index_str = map(str, pattern_index)
pattern_key = []
for i in range(0,len(pattern_index)):
pattern_key.append("pattern")
pattern_dict = {index:{key:value} for (index, key, value) in zip(pattern_index_str, pattern_key, patternSet)}
# Create position list
position_init = []
for j in range(0,len(seqNormInt)):
position_init.append([])
for i in pattern_dict:
pattern_dict[i]['position'] = copy.deepcopy(position_init)
## Create sequence DB and append the corresponding location to dict
seqDB_patternId = []
sequence = []
seq_temp = []
seqSum = 0
# for i in range(0,len(patternNormInt)):
for i, row in enumerate(seqNormInt):
candidates = [pattern_temp.pop(random.randrange(len(pattern_temp))) for _ in range(seqNormInt[i])]
seqDB_patternId.append(candidates)
# print('====Sequence: ',i,'====')
# print('row: ',row)
# print(seqDB_patternId[i])
for j in range(0,row):
seqPattern = seqDB_patternId[i][j]
# print(seqPattern)
# print('--item: ',j,'--')
if j == 0:
begin = 0
end = len(patternSet[seqPattern])
coordinate = (begin,end)
if j > 0:
begin = accum_sum
end = len(patternSet[seqPattern]) + begin
coordinate = (begin,end)
accum_sum = end
pattern_dict[str(seqPattern)]['position'][i].append(coordinate)
## Create the sequence DB in terms of methods
seqDB_list = copy.deepcopy(seqDB_patternId)
for i, row in enumerate(seqDB_list):
for j,cell in enumerate(row):
location = seqDB_list[i][j]
seqDB_list[i][j] = patternSet[location]
seqDB = []
for i, row in enumerate(seqDB_list):
seq_pattern = seqDB_list[i]
seq = list(itertools.chain.from_iterable(seq_pattern))
# Add Noise to seq
noise_flag = np.random.rand(len(seq)) < noise_ratio
for idx in sorted(np.where(noise_flag == True)[0], reverse=True):
seq.insert(idx, np.random.choice(phase_set))
seqDB.append(seq)
return (pattern_dict, seqDB, seqDB_list)
def noise_factor(max_noise = 0.1):
min_noise = 0
return min_noise + (np.random.rand() * (max_noise - min_noise))
# return np.random.rand() * max_noise
'''
================================================================================
Generate DB Logics
================================================================================
'''
seed = 42
folder = 'components/synthetic'
if os.path.exists(folder):
shutil.rmtree(folder)
folder = 'groundtruth/synthetic'
if os.path.exists(folder):
shutil.rmtree(folder)
# Global parameters
# Number of unique methods
methodUniqueAmount = 9999999
# Distribution of method in phases ( Number of Methods in Phases)
methodNumInPhase_mu = 10
methodNumInPhase_sigma = methodNumInPhase_mu * 0.1
# Distribution of repeating Phases
phaseRep_mu = 1
phaseRep_sigma = 0
method = method_pool(methodUniqueAmount, seed)
n_fold = 5
'''
=====================================================================
Generate sequences with different length of patterns
=====================================================================
'''
# Number of patterns
patternUniqueAmount = 10
# Distribution of number of patterns in sequences
patternInSeq_mu = patternUniqueAmount
patternInSeq_sigma = patternInSeq_mu * 0.1
# Distribution of number of patterns repeated
patternRep_mu = 20
patternRep_sigma = patternRep_mu * 0.1
# for pat_len in [5, 10, 25, 50, 100, 250, 500, 1000]:
for pat_len in [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]:
# Distribution of number of phases in patterns
patternNum_mu = pat_len
patternNum_sigma = pat_len * 0.1
# Number of unique phases
phaseUniqueAmount = int(patternUniqueAmount * (patternNum_mu + 1))
phase, phase_norm_int = phase_pool(method, methodNumInPhase_mu, methodNumInPhase_sigma, phaseUniqueAmount, seed)
pattern = pattern_pool_phase_id(phase, phase_norm_int, patternNum_mu, patternNum_sigma, patternUniqueAmount, seed)
for fold in range(n_fold):
'''
Parameters for generating sequences
'''
pattern_set, pattern_no = pattern_pool(pattern, phase, patternRep_mu, patternRep_sigma, len(pattern), fold)
sequence_number_in_db = math.floor(len(pattern_no) / patternInSeq_mu)
pattern_dictionary, sequence_database, sequence_database_list = \
sequenceDB_and_dict(pattern_set, pattern_no, patternInSeq_mu, patternInSeq_sigma, phase, sequence_number_in_db, fold, noise_factor())
# Write with pickle
folder = 'components/synthetic/pat_len/%04d/%d' % (pat_len, fold)
os.makedirs(folder)
for i in range(len(sequence_database)):
pickle.dump(sequence_database[i], open('%s/seq_%d.p' % (folder, i), "wb"))
folder = 'groundtruth/synthetic/pat_len/%04d/%d' % (pat_len, fold)
os.makedirs(folder)
pickle.dump(pattern_dictionary, open('%s/groundtruth.p' % folder, 'wb'))
'''
=====================================================================
Generate sequences with different number of patterns (seq_len)
=====================================================================
'''
# Distribution of number of phases in patterns
patternNum_mu = 10
patternNum_sigma = patternNum_mu * 0.1
# Distribution of number of patterns repeated
patternRep_mu = 20
patternRep_sigma = patternRep_mu * 0.1
for seq_len in [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]:
# Number of patterns
patternUniqueAmount = seq_len
# Distribution of number of patterns in sequences
patternInSeq_mu = patternUniqueAmount
patternInSeq_sigma = 0.1 * patternInSeq_mu
phase, phase_norm_int = phase_pool(method, methodNumInPhase_mu, methodNumInPhase_sigma, phaseUniqueAmount, seed)
pattern = pattern_pool_phase_id(phase, phase_norm_int, patternNum_mu, patternNum_sigma, patternUniqueAmount, seed)
for fold in range(n_fold):
'''
Parameters for generating sequences
'''
pattern_set, pattern_no = pattern_pool(pattern, phase, patternRep_mu, patternRep_sigma, len(pattern), fold)
sequence_number_in_db = math.floor(len(pattern_no) / patternInSeq_mu)
pattern_dictionary, sequence_database, sequence_database_list = \
sequenceDB_and_dict(pattern_set, pattern_no, patternInSeq_mu, patternInSeq_sigma, phase, sequence_number_in_db, fold, noise_factor())
# Write with pickle
folder = 'components/synthetic/seq_len/%04d/%d' % (seq_len, fold)
os.makedirs(folder)
for i in range(len(sequence_database)):
pickle.dump(sequence_database[i], open('%s/seq_%d.p' % (folder, i), "wb"))
folder = 'groundtruth/synthetic/seq_len/%04d/%d' % (seq_len, fold)
os.makedirs(folder)
pickle.dump(pattern_dictionary, open('%s/groundtruth.p' % folder, 'wb'))
'''
=====================================================================
Generate sequences with different number of sequences
=====================================================================
'''
# Number of patterns
patternUniqueAmount = 10
# Distribution of number of phases in patterns
patternNum_mu = 20
patternNum_sigma = patternNum_mu * 0.1
# Number of unique phases
phaseUniqueAmount = int(patternUniqueAmount * (patternNum_mu + 1))
# Distribution of number of patterns in sequences
patternInSeq_mu = patternUniqueAmount
patternInSeq_sigma = patternInSeq_mu * 0.1
for n_seq in [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]:
# Distribution of number of patterns repeated
patternRep_mu = n_seq
patternRep_sigma = n_seq * 0.1
for fold in range(n_fold):
phase, phase_norm_int = phase_pool(method, methodNumInPhase_mu, methodNumInPhase_sigma, phaseUniqueAmount, fold)
pattern = pattern_pool_phase_id(phase, phase_norm_int, patternNum_mu, patternNum_sigma, patternUniqueAmount, fold)
'''
Parameters for generating sequences
'''
pattern_set, pattern_no = pattern_pool(pattern, phase, patternRep_mu, patternRep_sigma, len(pattern), fold)
sequence_number_in_db = math.floor(len(pattern_no) / patternInSeq_mu)
pattern_dictionary, sequence_database, sequence_database_list = \
sequenceDB_and_dict(pattern_set, pattern_no, patternInSeq_mu, patternInSeq_sigma, phase, sequence_number_in_db, fold, noise_factor())
# Write with pickle
folder = 'components/synthetic/n_seq/%04d/%d' % (n_seq, fold)
os.makedirs(folder)
for i in range(len(sequence_database)):
pickle.dump(sequence_database[i], open('%s/seq_%d.p' % (folder, i), "wb"))
folder = 'groundtruth/synthetic/n_seq/%04d/%d' % (n_seq, fold)
os.makedirs(folder)
pickle.dump(pattern_dictionary, open('%s/groundtruth.p' % folder, 'wb'))
'''
=====================================================================
Generate sequences for performance evaluation
=====================================================================
'''
# Number of patterns
patternUniqueAmount = 10
# Distribution of number of phases in patterns
patternNum_mu = 20
patternNum_sigma = patternNum_mu * 0.1
# Number of unique phases
phaseUniqueAmount = int(patternUniqueAmount * (patternNum_mu + 1))
# Distribution of number of patterns in sequences
patternInSeq_mu = 10
patternInSeq_sigma = patternInSeq_mu * 0.1
# Distribution of number of patterns repeated
patternRep_mu = 20
patternRep_sigma = patternRep_mu * 0.1
phase, phase_norm_int = phase_pool(method, methodNumInPhase_mu, methodNumInPhase_sigma, phaseUniqueAmount, seed)
pattern = pattern_pool_phase_id(phase, phase_norm_int, patternNum_mu, patternNum_sigma, patternUniqueAmount, seed)
for fold in range(n_fold):
'''
Parameters for generating sequences
'''
pattern_set, pattern_no = pattern_pool(pattern, phase, patternRep_mu, patternRep_sigma, len(pattern), fold)
sequence_number_in_db = math.floor(len(pattern_no) / patternInSeq_mu)
pattern_dictionary, sequence_database, sequence_database_list = \
sequenceDB_and_dict(pattern_set, pattern_no, patternInSeq_mu, patternInSeq_sigma, phase, sequence_number_in_db, fold, noise_factor())
# Write with pickle
folder = 'components/synthetic/performance/%d' % fold
os.makedirs(folder)
for i in range(len(sequence_database)):
pickle.dump(sequence_database[i], open('%s/seq_%d.p' % (folder, i), "wb"))
folder = 'groundtruth/synthetic/performance/%d' % fold
os.makedirs(folder)
pickle.dump(pattern_dictionary, open('%s/groundtruth.p' % folder, 'wb'))
# # Print seqDB
# for i in range(len(sequence_database)):
# print('Trace %d: %s' % (i, len(sequence_database[i])))
#
# # Print Pattern Result
# for key in pattern_dictionary:
# print('Pattern: %s' % pattern_dictionary[key]['pattern'])
# print('Positions:')
# for i in range(len(pattern_dictionary[key]['position'])):
# print(' Trace %d: %s' % (i, pattern_dictionary[key]['position'][i]))