-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
244 lines (182 loc) · 9.86 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
import time
import gc
from tqdm import tqdm
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
import albumentations as A
from albumentations.pytorch import ToTensorV2
from sklearn.model_selection import train_test_split#, KFold
from iterstrat.ml_stratifiers import MultilabelStratifiedKFold
from torch.utils.tensorboard import SummaryWriter
from data_handler.FaceMaskDataset import FaceMaskDataset
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
def collate_fn(batch):
return tuple(zip(*batch))
def get_transformer(phase):
if phase == 'train':
return A.Compose([
A.OneOf([
# A.ChannelDropout(p=0.5),
A.Emboss(p=0.5),
A.Sharpen(p=0.5),
], p=0.5),
A.Rotate(p=0.5, limit=[-35, 35]),
A.MotionBlur(p=0.3),
A.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
ToTensorV2(p=1.0),
], bbox_params={'format': 'pascal_voc', 'label_fields': ['labels'], 'min_visibility': 0.3})
return A.Compose([
A.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
ToTensorV2(p=1.0)
], bbox_params={'format': 'pascal_voc', 'label_fields': ['labels'], 'min_visibility': 0.3})
def get_writers(path, model_name, fold=None):
if fold is not None:
return { phase: SummaryWriter('{}/logs/{}_fold_{}_{}'.format(path,
model_name,
fold,
phase))
for phase in ['train', 'valid'] }
return { phase: SummaryWriter('{}/logs/{}_{}'.format(path, model_name, phase))
for phase in ['train', 'valid'] }
def create_env(path):
if not os.path.exists(path):
os.mkdir(path)
paths = ['logs', 'models', 'metrics']
for p in paths:
sub_path = os.path.join(path, p)
if not os.path.exists(sub_path):
os.mkdir(sub_path)
def train_epochs(model, loaders, writers, optimizer, path, config, scheduler=None, prev_loss=float('inf')):
device = config.device
model = model.to(device).train()
best_loss = prev_loss
# iterate epochs
for epch in range(1, config.n_epochs + 1):
print('Epoch {:3d} of {}:'.format(epch, config.n_epochs), flush=True)
epoch_print = ''
# iterate phases
for phase in ['train', 'valid']:
with tqdm(total=len(loaders[phase]), desc=phase) as progress_bar:
samples = 0
epoch_losses = dict()
accum_loss = 0.0
# iterate batches
for imgs, annts in loaders[phase]: # get next batch
imgs = list(img.to(device) for img in imgs) # move images to GPU
annts = [{k: v.to(device) for k, v in t.items()} for t in annts] # move targets to GPU
batch_size = len(imgs)
samples += batch_size
# calculate batch losses
if phase == 'train':
loss_dict = model(imgs, annts)
else:
with torch.no_grad():
loss_dict = model(imgs, annts)
losses = sum(loss for loss in loss_dict.values()) # sum total of all batch loseses
if phase == 'train':
optimizer.zero_grad()
losses.backward()
optimizer.step()
accum_loss += losses.item() # aggregate to get epoch loss at the end
for name, val in loss_dict.items():
if name in epoch_losses:
epoch_losses[name] += val
else:
epoch_losses[name] = val
del imgs, annts, loss_dict, losses
torch.cuda.empty_cache()
progress_bar.update(1)
# end of epoch, next section will run twice,
# once for training phase and once for validation phase of each epoch
# print to terminal and summary writers at end of each wpoch
epoch_print += phase + ':\t'
for key, val in epoch_losses.items():
writers[phase].add_scalar(key, val, epch)
epoch_print += '{}={:.5f}\t'.format(key, val)
epoch_print += 'total loss={:.5f}{}'.format(accum_loss, '\n' if phase == 'train' else '')
writers[phase].add_scalar('average_loss', accum_loss, epch)
del epoch_losses
# print outputs to the screen after done both training and validation phases of each epoch
print(epoch_print, flush=True)
# write learning rate to the summary writer
if scheduler is not None:
writers['train'].add_scalar('lr_epoch', scheduler.get_last_lr()[0], epch)
scheduler.step()
# if the model perform better in this epoch, save it's parameters
if accum_loss < best_loss:
saveing_path = '{}/models/{}_model.pth'.format(path, config.model_name)
print('Model saved. Loss < PrevLoss ({:.5f} < {:.5f})\n'.format(accum_loss, best_loss))
best_loss = accum_loss
torch.save(model.state_dict(), saveing_path)
time.sleep(1)
return best_loss
def get_dataloaders(x_train, x_valid, y_train, y_valid, config):
trainset = FaceMaskDataset(x_train, y_train, config.imgs_path, config.msks_path, config.img_width, config.img_height, transforms=get_transformer('train'))
validset = FaceMaskDataset(x_valid, y_valid, config.imgs_path, config.msks_path, config.img_width, config.img_height, transforms=get_transformer('valid'))
train_loader = DataLoader(dataset=trainset, batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers, collate_fn=collate_fn)
valid_loader = DataLoader(dataset=validset, batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers, collate_fn=collate_fn)
train_loader = DataLoader(dataset=trainset, batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers, collate_fn=collate_fn)
valid_loader = DataLoader(dataset=validset, batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers, collate_fn=collate_fn)
return { 'train': train_loader,
'valid': valid_loader }
def train_folds(model, x, y, path, config, scheduler=None):
print('This running path is: `{}`\n'.format(path))
if config.n_folds == 1:
x_train, x_valid, y_train, y_valid = train_test_split(x, y, train_size=config.train_size, random_state=config.seed)
dataloaders = get_dataloaders(x_train, x_valid, y_train, y_valid, config)
writers = get_writers(path, config.model_name)
optimizer = get_optimizer(model, config)
scheduler = get_scheduler(optimizer, config)
train_epochs(model, dataloaders, writers, optimizer, path, config, scheduler)
else:
kfold = MultilabelStratifiedKFold(n_splits=config.n_folds, shuffle=True, random_state=config.seed)
(y_annts, y_labels) = y
prev_loss = float('inf')
# iterate folds
for fold, (train_index, valid_index) in enumerate(kfold.split(x, y_labels), start=1):
print('\033[1m\033[4mFold {} of {}\033[0m'.format(fold, config.n_folds))
# get different training and validation writers for each fold
writers = get_writers(path, config.model_name, fold)
# getting fold's data
x_train, x_valid = x[train_index], x[valid_index]
y_train, y_valid = y_annts[train_index], y_annts[valid_index]
dataloaders = get_dataloaders(x_train, x_valid, y_train, y_valid, config)
optimizer = get_optimizer(model, config)
scheduler = get_scheduler(optimizer, config)
prev_loss = train_epochs(model, dataloaders, writers, optimizer, path, config, scheduler, prev_loss)
del x_train, x_valid, y_train, y_valid
# saving model's state each fold
saveing_path = '{}/models/{}_fold_{}_model.pth'.format(path, config.model_name, fold)
torch.save(model.state_dict(), saveing_path)
for _, w in writers.items():
w.close()
def train(model, x, y, path, config):
create_env(path)
config.save(path)
try:
train_folds(model, x, y, path, config)
except Exception as ex:
torch.cuda.empty_cache()
print(ex)
gc.collect()
def get_model(num_classes, pretrained=True):
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=pretrained) # get model
in_features = model.roi_heads.box_predictor.cls_score.in_features # get input size of last layer
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) # regenerate the last layer
return model
def get_optimizer(model, config):
params = [p for p in model.parameters() if p.requires_grad] # get optimizeable paramaters
return config.optimizer(params, **config.optimizer_dict)
def get_scheduler(optimizer, config):
if not config.scheduler:
return None
return config.scheduler(optimizer, **config.scheduler_dict)