-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest-oracle.py
109 lines (93 loc) · 3.52 KB
/
test-oracle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import argparse, os, sys
# add the root folder of the project to the path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from Utils.utils import setupGPU, load_config
setupGPU() # call it on startup to prevent OOM errors on my machine
import tensorflow as tf
from NN.utils import ensure4d
from Utils import dataset_from_config
from NN.CBaseModel import CBaseModel
class COracleModel(CBaseModel):
def __init__(self, grayscaled, method, **kwargs):
super().__init__(**kwargs)
self._grayscaled = grayscaled
self._method = method
return
def test_step(self, images):
(src, dest) = images
src = ensure4d(src)
dest = ensure4d(dest)
srcShape = (tf.shape(src)[1], tf.shape(src)[2])
destShape = (tf.shape(dest)[1], tf.shape(dest)[2])
# create fake reconstructed image from the ground truth
reconstructed = (dest + 1.0) / 2.0
# downscale it to the size of the source image and upscale back
reconstructed = tf.image.resize(reconstructed, srcShape, method=self._method)
if self._grayscaled:
reconstructed = tf.image.rgb_to_grayscale(reconstructed)
reconstructed = tf.image.resize(reconstructed, destShape, method=self._method)
if self._grayscaled:
reconstructed = tf.image.grayscale_to_rgb(reconstructed)
# convert back to the range of the source image
reconstructed = (reconstructed * 2.0) - 1.0
return self._testMetrics(dest, reconstructed)
def main(args):
folder = os.path.dirname(__file__)
config = load_config(args.config, folder=folder)
# Select dataset
dataset = dataset_from_config(config['dataset'])
test_data = dataset.make_dataset(config['dataset']['test'], split='test')
measurements = {}
for method in ['nearest', 'bilinear', 'bicubic', 'area']:
print(f'Interpolation method: {method}')
print()
measurements[method] = {}
methodMeasurements = measurements[method]
for grayscaled in [True, False]:
if grayscaled:
print('Oracle that did not know real colors')
else:
print('Oracle that knew real colors')
model = COracleModel(grayscaled=grayscaled, method=method)
model.compile()
losses = model.evaluate(test_data, return_dict=True, verbose=1)
methodMeasurements[grayscaled] = {'RGB': losses['loss'], 'Grayscale': losses['loss_gr']}
print('-' * 80)
continue
print('=' * 80)
print()
continue
# Generate HTML table
html_table = """<table class="myTable">
<tr>
<th></th>
<th colspan="2">with color reference</th>
<th colspan="2">without color reference</th>
</tr>
<tr>
<th>Method</th>
<th>RGB MSE</th>
<th>Grayscale MSE</th>
<th>RGB MSE</th>
<th>Grayscale MSE</th>
</tr>
"""
for method, methodMeasurements in measurements.items():
html_table += "<tr>\n" if not (method == 'bilinear') else "<tr class='used'>\n"
html_table += f" <td>{method}</td>\n"
for grayscaled in [False, True]:
losses = methodMeasurements[grayscaled]
html_table += " <td>%.05f</td> <td>%.05f</td>\n" % (losses['RGB'], losses['Grayscale'])
html_table += "</tr>\n"
html_table += "</table>"
print(html_table)
return
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process arguments.')
parser.add_argument(
'--config', type=str, required=True,
help='Path to a single config file or a multiple config files (they will be merged in order of appearance)',
default=[], action='append',
)
args = parser.parse_args()
main(args)