From 6caeb196306b39d3983145ae28a8368c28386fe8 Mon Sep 17 00:00:00 2001 From: Romain Hugonnet Date: Mon, 6 May 2024 17:26:37 -0800 Subject: [PATCH] Fix CI errors due to basinhopping algorithm and coverage (#520) --- .github/workflows/python-tests.yml | 2 +- tests/test_coreg/test_biascorr.py | 6 +++--- xdem/fit.py | 2 +- 3 files changed, 5 insertions(+), 5 deletions(-) diff --git a/.github/workflows/python-tests.yml b/.github/workflows/python-tests.yml index a0a064ac..012b281a 100644 --- a/.github/workflows/python-tests.yml +++ b/.github/workflows/python-tests.yml @@ -97,7 +97,7 @@ jobs: flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics - name: Setup pip dependencies - run: pip install pytest-cov coveralls coveragepy-lcov + run: pip install pytest-cov coveralls coveragepy-lcov 'coverage<7' - name: Print conda environment (for debugging) run: | diff --git a/tests/test_coreg/test_biascorr.py b/tests/test_coreg/test_biascorr.py index 5139c329..6baac537 100644 --- a/tests/test_coreg/test_biascorr.py +++ b/tests/test_coreg/test_biascorr.py @@ -307,7 +307,7 @@ def test_biascorr__bin_and_fit_1d(self, fit_args, fit_func, fit_optimizer, bin_s elev_fit_args.update({"niter": 1}) # Run with input parameter, and using only 100 subsamples for speed - bcorr.fit(**elev_fit_args, subsample=100, random_state=42) + bcorr.fit(**elev_fit_args, subsample=1000, random_state=42) # Check that variable names are defined during fit assert bcorr._meta["bias_var_names"] == ["elevation"] @@ -560,10 +560,10 @@ def test_deramp__synthetic(self, fit_args, order: int) -> None: deramp = biascorr.Deramp(poly_order=order) elev_fit_args = fit_args.copy() if isinstance(elev_fit_args["to_be_aligned_elev"], gpd.GeoDataFrame): - bias_elev = bias_dem.to_pointcloud(data_column_name="z", subsample=30000).ds + bias_elev = bias_dem.to_pointcloud(data_column_name="z", subsample=50000).ds else: bias_elev = bias_dem - deramp.fit(elev_fit_args["reference_elev"], to_be_aligned_elev=bias_elev, subsample=20000, random_state=42) + deramp.fit(elev_fit_args["reference_elev"], to_be_aligned_elev=bias_elev, subsample=40000, random_state=42) # Check high-order fit parameters are the same within 10% fit_params = deramp._meta["fit_params"] diff --git a/xdem/fit.py b/xdem/fit.py index a7ce993e..01b083ac 100644 --- a/xdem/fit.py +++ b/xdem/fit.py @@ -535,7 +535,7 @@ def wrapper_cost_sumofsin(p: NDArrayf, x: NDArrayf, y: NDArrayf) -> float: # Insert in a scipy bounds object scipy_bounds = scipy.optimize.Bounds(lb, ub) # First guess for the mean parameters - p0 = np.divide(lb + ub, 2).squeeze() + p0 = ((lb + ub) / 2).squeeze() if verbose: print("Bounds")