-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgui.py
121 lines (95 loc) · 5.4 KB
/
gui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from trenchcalc import Data
from tkinter import * # NOQA
from tkinter import filedialog
import pandas as pd
import numpy as np
import scipy
from scipy import stats
root = Tk()
var_tilt = IntVar(value=1)
var_3d_plot = IntVar()
var_save_plot = IntVar()
global file_list
button_open = Button(root, text="open", command=lambda: open_files())
button_open.grid(row=0, column=0)
checkbutton_tilt = Checkbutton(root, text='tilt correction', variable=var_tilt)
checkbutton_tilt.grid(row=0, column=1)
checkbutton_3d_plot = Checkbutton(root, text='3d plot', variable=var_3d_plot)
checkbutton_3d_plot.grid(row=0, column=2)
checkbutton_print_plot = Checkbutton(root, text='save plot', variable=var_save_plot)
checkbutton_print_plot.grid(row=0, column=3)
label_avg_level = Label(root, text='avg level: ')
label_avg_level.grid(row=1, column=0)
entry_avg_level = Entry(root, width=3)
entry_avg_level.insert(END, 5)
entry_avg_level.grid(row=1, column=1)
label_confidence_level = Label(root, text='confidence level: ')
label_confidence_level.grid(row=2, column=0)
entry_confidence_level = Entry(root, width=3)
entry_confidence_level.insert(END, 0.95)
entry_confidence_level.grid(row=2, column=1)
label_x = Label(root, text='x-value: ')
label_x.grid(row=3, column=0)
entry_x = Entry(root, width=3)
entry_x.insert(END, 100)
entry_x.grid(row=3, column=1)
button_exec = Button(root, text='Execute', state=DISABLED,
command=lambda: exec_measure(file_list,
int(entry_avg_level.get()),
float(entry_confidence_level.get()),
int(entry_x.get()),
var_tilt.get(),
var_3d_plot.get(),
var_save_plot.get()))
button_exec.grid(row=4, column=1)
def open_files():
global file_list
gathered_names = filedialog.askopenfilenames(title="Open File",
filetypes=(("CSV Files", "*.csv"), ("All Files", "*.*"))
)
file_list = list(gathered_names)
button_exec.config(state='normal')
def exec_measure(list_of_filenames, avg_level, confidence_level, x_value, check_tilt, check_3d_plot, check_save_plot):
output = pd.DataFrame(columns=['height', 'width', 'etch_factor', 'confidence_etch_factors', 'confidence_level',
'degrees_of_freedom', 'std_heights', 'std_widths', 'confidence_heights',
'confidence_widths', 'height_1', 'height_2',
'height_3', 'height_4', 'height_5', 'height_6', 'height_7', 'height_8', 'height_9',
'height_10', 'height_11', 'height_12', 'height_13', 'height_14', 'height_15',
'height_16', 'width_1', 'width_2', 'width_3', 'width_4', 'width_5', 'width_6',
'width_7', 'width_8', 'width_9', 'width_10', 'width_11', 'width_12', 'width_13',
'width_14', 'width_15', 'width_16', 'etch_factor_1', 'etch_factor_2',
'etch_factor_3', 'etch_factor_4', 'etch_factor_5', 'etch_factor_6', 'etch_factor_7',
'etch_factor_8', 'etch_factor_9', 'etch_factor_10', 'etch_factor_11',
'etch_factor_12', 'etch_factor_13', 'etch_factor_14', 'etch_factor_15',
'etch_factor_16', 'mean_heights', 'mean_widths', 'mean_etch_factors'])
for file in list_of_filenames:
data = Data(file, avg_level, confidence_level)
if check_tilt:
data.tilt_correction()
if check_3d_plot:
data.plot_3d()
data.measure_chunks(check_save_plot)
etch_factor = data.height / ((data.width - x_value) / 2)
etch_factor_chunks = []
for count in range(len(data.chunks_heights)):
etch_factor_chunks.append(data.chunks_heights[count] / ((data.chunks_widths[count] - x_value) / 2))
etch_factor_chunks_mean = np.mean(etch_factor_chunks)
etch_factor_chunks_std_err = scipy.stats.sem(etch_factor_chunks)
conf_calc_etch_factor_chunks = scipy.stats.t.interval(data.confidence_level, data.degrees_freedom,
etch_factor_chunks_mean, etch_factor_chunks_std_err)
conf_etch_factor_chunks = abs(conf_calc_etch_factor_chunks[0] - conf_calc_etch_factor_chunks[1]) / 2
file_output = []
file_output.extend([data.height, data.width, etch_factor, conf_etch_factor_chunks, data.confidence_level,
data.degrees_freedom, data.heights_std, data.widths_std, data.conf_heights,
data.conf_widths])
file_output.extend(data.chunks_heights)
file_output.extend(data.chunks_widths)
file_output.extend(etch_factor_chunks)
file_output.append(data.chunks_heights_mean)
file_output.append(data.chunks_widths_mean)
file_output.append(sum(etch_factor_chunks) / len(etch_factor_chunks))
output.loc[data.file_name.split('/')[-1]] = file_output
output = output.T
output_name = filedialog.asksaveasfile(mode='w', defaultextension=".csv")
output.to_csv(output_name)
root.mainloop()