-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMonteCarlo.py
153 lines (118 loc) · 4.64 KB
/
MonteCarlo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import random, h5py, os
import numpy as np
from board import TakBoard
from time import time
import hashlib, requests
from Node import UCTNode
from train import TakZeroNetwork
#np.set_printoptions(threshold=np.nan)
class UCTTakGame():
"""docstring for UCTGame"""
def __init__(self, ai, ittermult=100):
self.ittermult = ittermult
self.verbose = False
self.ai = ai
self.game = TakBoard(5)
self.rootnode = UCTNode(state = self.game)
self.childNodes = None
def main(self):
train_data = []
while (self.game.white_win == False and self.game.black_win == False):
start_time = time()
self.childNodes = self.search()
m = self.choose_move()
print("Best Move: {}, Trys: {}, took {:.6f}s".format(m.move, m.visits, time() - start_time), flush=True)
np_state = self.game.get_numpy_board()
addition = np.full(1575, -1, dtype=int)
for moves in self.childNodes:
addition[moves.move["index"]] = moves.wins / moves.visits
#print(winrate)
train_data.append({"probs":addition, "state":np_state})
self.game.exec_move(m.move)
self.change_root_node(m)
if self.game.white_win == True:
print("White Player wins!", flush=True)
train_data.append(True)
elif self.game.black_win == True:
print("Black Player wins!", flush=True)
train_data.append(False)
else:
print("Nobody wins!", flush=True)
return train_data
def change_root_node(self, childNode):
#count = 0
#for node in self.childNodes:
# count += node.visits
#print("Visits",count)
self.rootnode = childNode
def choose_move(self, randomChoice=True):
return self.childNodes[-1]
def search(self):
itter = self.ittermult * (len(self.rootnode.untriedMoves) + len(self.rootnode.childNodes))
#print(itter)
for i in range(itter):
self.rollout(self.game.clone(), self.rootnode)
#print(self.rootnode.childNodes[0].visits, self.rootnode.visits)
return sorted(self.rootnode.childNodes, key = lambda c: (c.visits, c.wins))
def rollout(self, state, node):
player1_turn = state.player1_turn
# Select
while node.untriedMoves == [] and node.childNodes != []: # node is fully expanded and non-terminal
node = node.UCTSelectChild()
state.exec_move(node.move)
# Expand
count = len(node.untriedMoves)
gamma = np.random.gamma(0.03, 1.0, count)
gamma = gamma / np.sum(gamma)
idx = 0
#print(count)
if node.untriedMoves != []: # if we can expand (i.e. state/node is non-terminal)
m = random.choice(node.untriedMoves)
state.exec_move(m)
#Get Probs from AI
x_input = state.get_input()
probs, winner = self.ai.predict(x_input)
prob = probs[m["index"]] * (1 - 0.25) + 0.25 * gamma[idx%count]
idx += 1
node = node.AddChild(m,state, prob) # add child and descend tree
# Rollout - this can often be made orders of magnitude quicker using a state.GetRandomMove() function
while (state.white_win == False and state.black_win == False): # while state is non-terminal
state.exec_move(random.choice(state.get_plays()))
# Backpropagate
while node != None: # backpropagate from the expanded node and work back to the root node
#print(state.white_win - state.black_win)
if player1_turn == True:
node.Update(state.white_win) # state is terminal. Update node with result from POV of node.playerJustMoved
else:
node.Update(state.black_win)
node = node.parentNode
def save(training_data, network):
if network == None:
network = "best"
#print(training_data)
winner = training_data[-1]
training_data = training_data[:-1]
if not os.path.isdir(os.path.join(os.getcwd(), network)):
os.makedirs(os.path.join(os.getcwd(), network))
name = hashlib.md5(repr(training_data).encode('utf-8')).hexdigest()
with h5py.File(os.path.join(os.getcwd(), network, "Game_{}.hdf5".format(name)), 'w') as hf:
print("Game has {} moves".format(len(training_data)), flush=True)
for index, gamedata in enumerate(training_data):
hf.create_dataset("state_{}".format(index), data=gamedata["state"], compression="gzip", compression_opts=9)
hf.create_dataset("probs_{}".format(index), data=gamedata["probs"], compression="gzip", compression_opts=9)
hf.create_dataset("white_win", data=np.array([winner]), compression="gzip", compression_opts=9)
#Upload Game to server
try:
r = requests.post("https://zero.generalzero.org/submit_game", data={"network": network}, files={"game": open(os.path.join(os.getcwd(), network, "Game_{}.hdf5".format(name)), 'rb')})
if r.status_code == 200:
print("Game saved to Server")
else:
print(r.status_code, r.text)
except:
print("Error uploading to server")
if __name__ == "__main__":
ai = TakZeroNetwork()
ai.generate_network()
for x in range(50000):
p = UCTTakGame(ai, 5)
save(p.main(), ai.network)