Based on CycleGAN codebase by Jun-Yan Zhu and Taesung Park (Link to original repo).
More project information soon.
You may find useful information in training/test tips and frequently asked questions.
- Linux or macOS
- Python 2 or 3
- CPU or NVIDIA GPU + CUDA CuDNN
- Clone this repo:
git clone https://github.com/GauthamN/MotorcycleGAN.git
- Install PyTorch 0.4+ and torchvision from http://pytorch.org and other dependencies (e.g., visdom and dominate). You can install all the dependencies by
pip install -r requirements.txt
- For Conda users, we include a script
./scripts/conda_deps.sh
to install PyTorch and other libraries.
- Download a CycleGAN dataset (e.g. maps):
bash ./datasets/download_cyclegan_dataset.sh maps
- Train a model:
#!./scripts/train_cyclegan.sh
python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan
-
To view training results and loss plots, run
python -m visdom.server
and click the URL http://localhost:8097. To see more intermediate results, check out./checkpoints/maps_cyclegan/web/index.html
. -
Test the model:
#!./scripts/test_cyclegan.sh
python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan
- The test results will be saved to a html file here:
./results/maps_cyclegan/latest_test/index.html
.