-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsha_256.c
242 lines (203 loc) · 6.46 KB
/
sha_256.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/* Adapted 2013 by Andrew Appel from OpenSSL098 crypto/sha/sha256.c
* Copyright (c) 2004 The OpenSSL Project. All rights reserved
* according to the OpenSSL license.
*/
#include "sha_256.h"
extern unsigned int __builtin_read32_reversed(const unsigned int * ptr);
extern void __builtin_write32_reversed(unsigned int * ptr, unsigned int x);
#include <stddef.h>
void * memcpy(void * __restrict, const void * __restrict, size_t);
void * memset(void *, int, size_t);
/* from md32_common.h */
#ifdef COMPCERT
#define HOST_c2l(c,l) (l=(unsigned long)(__builtin_read32_reversed(((unsigned int *)c))),c+=4,l)
#define HOST_l2c(l,c) (__builtin_write32_reversed(((unsigned int *)(c)),l),c+=4,l)
#else
#define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++)))<<24), \
l|=(((unsigned long)(*((c)++)))<<16), \
l|=(((unsigned long)(*((c)++)))<< 8), \
l|=(((unsigned long)(*((c)++))) ), \
l)
#define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \
*((c)++)=(unsigned char)(((l)>>16)&0xff), \
*((c)++)=(unsigned char)(((l)>> 8)&0xff), \
*((c)++)=(unsigned char)(((l) )&0xff), \
l)
#endif
/* end from md32_common.h */
#define MD32_REG_T long
#define ROTATE(a,n) (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))
static const SHA_LONG K256[64] = {
0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
/*
* FIPS specification refers to right rotations, while our ROTATE macro
* is left one. This is why you might notice that rotation coefficients
* differ from those observed in FIPS document by 32-N...
*/
#define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
#define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
#define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
#define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
void sha256_block_data_order (SHA256_CTX *ctx, const void *in)
{
unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2,t;
SHA_LONG X[16],l,Ki;
int i;
const unsigned char *data=in;
a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
for (i=0;i<16;i++)
{
HOST_c2l(data,l); X[i] = l;
Ki=K256[i];
T1 = l + h + Sigma1(e) + Ch(e,f,g) + Ki;
T2 = Sigma0(a) + Maj(a,b,c);
h = g; g = f; f = e; e = d + T1;
d = c; c = b; b = a; a = T1 + T2;
}
for (;i<64;i++)
{
s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);
T1 = X[i&0xf];
t = X[(i+9)&0xf];
T1 += s0 + s1 + t;
X[i&0xf] = T1;
Ki=K256[i];
T1 += h + Sigma1(e) + Ch(e,f,g) + Ki;
T2 = Sigma0(a) + Maj(a,b,c);
h = g; g = f; f = e; e = d + T1;
d = c; c = b; b = a; a = T1 + T2;
}
t=ctx->h[0]; ctx->h[0]=t+a;
t=ctx->h[1]; ctx->h[1]=t+b;
t=ctx->h[2]; ctx->h[2]=t+c;
t=ctx->h[3]; ctx->h[3]=t+d;
t=ctx->h[4]; ctx->h[4]=t+e;
t=ctx->h[5]; ctx->h[5]=t+f;
t=ctx->h[6]; ctx->h[6]=t+g;
t=ctx->h[7]; ctx->h[7]=t+h;
return;
}
void SHA256_Init (SHA256_CTX *c)
{
c->h[0]=0x6a09e667UL; c->h[1]=0xbb67ae85UL;
c->h[2]=0x3c6ef372UL; c->h[3]=0xa54ff53aUL;
c->h[4]=0x510e527fUL; c->h[5]=0x9b05688cUL;
c->h[6]=0x1f83d9abUL; c->h[7]=0x5be0cd19UL;
c->Nl=0; c->Nh=0;
c->num=0;
}
void SHA256_addlength(SHA256_CTX *c, size_t len) {
SHA_LONG l, cNl,cNh;
cNl=c->Nl; cNh=c->Nh;
l=(cNl+(((SHA_LONG)len)<<3))&0xffffffffUL;
if (l < cNl) /* overflow */
{cNh ++;}
cNh += (len>>29);
c->Nl=l; c->Nh=cNh;
}
void SHA256_Update (SHA256_CTX *c, const void *data_, size_t len) {
const unsigned char *data=data_;
unsigned char *p;
size_t n, fragment;
SHA256_addlength(c, len);
n = c->num;
p=c->data;
if (n != 0) {
fragment = SHA_CBLOCK-n;
if (len >= fragment) {
memcpy (p+n,data,fragment);
sha256_block_data_order (c,p);
data += fragment;
len -= fragment;
memset (p,0,SHA_CBLOCK); /* keep it zeroed */
}
else {
memcpy (p+n,data,len);
c->num = n+(unsigned int)len;
return;
}
}
while (len >= SHA_CBLOCK) {
sha256_block_data_order (c,data);
data += SHA_CBLOCK;
len -= SHA_CBLOCK;
}
c->num=len;
if (len != 0) {
memcpy (p,data,len);
}
return;
}
void SHA256_Final (unsigned char *md, SHA256_CTX *c) {
unsigned char *p = c->data;
size_t n = c->num;
SHA_LONG cNl,cNh;
p[n] = 0x80; /* there is always room for one */
n++;
if (n > (SHA_CBLOCK-8))
{
memset (p+n,0,SHA_CBLOCK-n);
n=0;
sha256_block_data_order (c,p);
}
memset (p+n,0,SHA_CBLOCK-8-n);
p += SHA_CBLOCK-8;
cNh=c->Nh; (void)HOST_l2c(cNh,p);
cNl=c->Nl; (void)HOST_l2c(cNl,p);
p -= SHA_CBLOCK;
sha256_block_data_order (c,p);
c->num=0;
memset (p,0,SHA_CBLOCK);
{unsigned long ll;
unsigned int xn;
for (xn=0;xn<SHA256_DIGEST_LENGTH/4;xn++)
{ ll=(c)->h[xn]; HOST_l2c(ll,md); }
}
return;
}
void SHA256(const unsigned char *d, size_t n, unsigned char *md) {
SHA256_CTX c;
SHA256_Init(&c);
SHA256_Update(&c,d,n);
SHA256_Final(md,&c);
}
#if 0
#define TEST_N 100
#include <stdio.h>
#include <string.h>
char a[TEST_N] = "The quick brown fox jumps over the lazy dog";
int main(void) {
int i;
unsigned char digest[SHA256_DIGEST_LENGTH];
SHA256((unsigned char *)a, strlen(a), digest);
for (i=0;i<SHA256_DIGEST_LENGTH;i++)
printf("%02x",digest[i]);
putchar('\n');
printf("d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592\n");
}
#endif
/* From http://en.wikipedia.org/wiki/SHA-2
SHA256("The quick brown fox jumps over the lazy dog")
0x d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592
SHA256("The quick brown fox jumps over the lazy dog.")
0x ef537f25c895bfa782526529a9b63d97aa631564d5d789c2b765448c8635fb6c
*/