-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdata.py
121 lines (102 loc) · 5.69 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import numpy as np
import torch
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
import random
import params as P
import utils
# Function to compute mean value, std dev and zca matrix for data normalization and whitening on CIFAR10
def get_dataset_stats(limit):
DATA_STATS_FILE = P.STATS_FOLDER + '/cifar10_' + str(limit) + '.pt'
MEAN_KEY = 'mean'
STD_KEY = 'std'
ZCA_KEY = 'zca'
# Load statistics
stats = utils.load_dict(DATA_STATS_FILE) # Try to load stats from file
if stats is None: # Stats file does not exist --> Compute statistics
print("Computing statistics on dataset[0:" + str(limit) + "] (this might take a while)")
# Load dataset
cifar10 = CIFAR10(root=P.DATA_FOLDER, train=True, download=True) # Load CIFAR10 dataset
X = cifar10.data[0:limit] # X is M x N (M = limit: samples, N = 3072: variables per dataset sample)
# Normalize the data to [0 1] range
X = X / 255.
# Compute mean and st. dev. and normalize the data to zero mean and unit variance
mean = X.mean(axis=(0, 1, 2), keepdims=True)
std = X.std(axis=(0, 1, 2), keepdims=True)
X = (X - mean)/std
# Transpose image tensors dimensions in order to put channel dimension in pos. 1, as expected by pytorch
X = X.transpose(0, 3, 1, 2)
# Reshape image tensors from shape 32x32x3 to vectors of size 32*32*3=3072
X = X.reshape(limit, -1)
# Compute ZCA matrix
cov = np.cov(X, rowvar=False)
U, S, V = np.linalg.svd(cov)
SMOOTHING_CONST = 1e-1
zca = np.dot(U, np.dot(np.diag(1.0 / np.sqrt(S + SMOOTHING_CONST)), U.T))
# Save statistics
stats = {MEAN_KEY: mean.squeeze().tolist(), STD_KEY: std.squeeze().tolist(), ZCA_KEY: torch.from_numpy(zca).float()}
utils.save_dict(stats, DATA_STATS_FILE)
print("Statistics computed and saved")
return stats[MEAN_KEY], stats[STD_KEY], stats[ZCA_KEY]
class DataManager:
def __init__(self, config):
# Constants for data loading
self.VAL_SET_SPLIT = config.VAL_SET_SPLIT
self.BATCH_SIZE = config.BATCH_SIZE
# Compute dataset statistics
mean, std, zca = get_dataset_stats(self.VAL_SET_SPLIT)
# Define transformations to be applied on the data
# Basic transformations
T = transforms.Compose([
# The first transform is ToTensor, which transforms the raw CIFAR10 data to a tensor in the form
# [depth, width, height]. Additionally, pixel values are mapped from the range [0, 255] to the range [0, 1]
transforms.ToTensor(),
# The Normalize transform subtracts mean values from each channel (passed in the first tuple) and divides each
# channel by std dev values (passed in the second tuple). In this case we bring each channel to zero mean and
# unitary std dev, i.e. from range [0, 1] to [-1, 1]
transforms.Normalize(mean, std)
])
# Add whitening transformation, if needed
if config.WHITEN_DATA: T = transforms.Compose([T, transforms.LinearTransformation(zca, torch.zeros(zca.size(1)))])
self.T_train = T
self.T_test = T
# Extra transformations for data augmentation
if config.AUGMENT_DATA:
T_augm = transforms.Compose([
transforms.RandomApply([transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=20 / 360)], p=0.5),
transforms.RandomApply([transforms.ColorJitter(saturation=1)], p=0.5),
transforms.RandomHorizontalFlip(),
transforms.Pad(8),
transforms.RandomApply([transforms.Lambda(lambda x: TF.resize(x, (48 + random.randint(-6, 6), 48 + random.randint(-6, 6))))], p=0.3),
transforms.RandomApply([transforms.RandomAffine(degrees=10, shear=10)], p=0.3),
transforms.CenterCrop(40),
transforms.RandomApply([transforms.RandomCrop(32)], p=0.5),
transforms.CenterCrop(32),
])
self.T_train = transforms.Compose([T_augm, self.T_train])
# Methods for obtaining train, validation and test set
def get_train(self):
# Download the dataset, if necessary, and preprocess with the specified transformations
cifar10 = CIFAR10(root=P.DATA_FOLDER, train=True, download=True, transform=self.T_train)
# The sampler is needed to extract the specific portion of dataset that will be used for training
sampler = SubsetRandomSampler(range(self.VAL_SET_SPLIT))
# Build a DataLoader allowing to fetch data from the dataset. This is the obj that will be returned to the caller
return DataLoader(cifar10, batch_size=self.BATCH_SIZE, sampler=sampler, num_workers=P.NUM_WORKERS)
def get_val(self):
# If all the training batches are used for training, use test set for validation
if self.VAL_SET_SPLIT >= P.CIFAR10_NUM_TRN_SAMPLES: return self.get_test()
# Download the dataset, if necessary, and preprocess with the specified transformations
cifar10 = CIFAR10(root=P.DATA_FOLDER, train=True, download=True, transform=self.T_test)
# The sampler is needed to extract another portion of dataset that will be used for validation
sampler = SubsetRandomSampler(range(self.VAL_SET_SPLIT, P.CIFAR10_NUM_TRN_SAMPLES))
# Build a DataLoader allowing to fetch data from the dataset. This is the obj that will be returned to the caller
return DataLoader(cifar10, batch_size=self.BATCH_SIZE, sampler=sampler, num_workers=P.NUM_WORKERS)
def get_test(self):
# Download the dataset, if necessary, and preprocess with the specified transformations
cifar10 = CIFAR10(root=P.DATA_FOLDER, train=False, download=True, transform=self.T_test)
# A sampler is not needed for the test dataset, because CIFAR10 already provides it in a separate batch
# Build a DataLoader allowing to fetch data from the dataset. This is the obj that will be returned to the caller
return DataLoader(cifar10, batch_size=self.BATCH_SIZE, num_workers=P.NUM_WORKERS)