-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.py
77 lines (60 loc) · 3.17 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import tensorflow as tf
class batch_norm(object):
"""Code modification of http://stackoverflow.com/a/33950177"""
def __init__(self, epsilon=1e-5, momentum = 0.9, name="batch_norm"):
with tf.variable_scope(name):
self.epsilon = epsilon
self.momentum = momentum
self.ema = tf.train.ExponentialMovingAverage(decay=self.momentum)
self.name = name
def __call__(self, x, train=True):
shape = x.get_shape().as_list()
if train:
with tf.variable_scope(self.name) as scope:
self.beta = tf.get_variable("beta", [shape[-1]],
initializer=tf.constant_initializer(0.))
self.gamma = tf.get_variable("gamma", [shape[-1]],
initializer=tf.random_normal_initializer(1., 0.02))
batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments')
ema_apply_op = self.ema.apply([batch_mean, batch_var])
self.ema_mean, self.ema_var = self.ema.average(batch_mean), self.ema.average(batch_var)
with tf.control_dependencies([ema_apply_op]):
mean, var = tf.identity(batch_mean), tf.identity(batch_var)
else:
mean, var = self.ema_mean, self.ema_var
normed = tf.nn.batch_norm_with_global_normalization(
x, mean, var, self.beta, self.gamma, self.epsilon, scale_after_normalization=True)
return normed
# standard convolution layer
def conv2d(x, inputFeatures, outputFeatures, name, train=True,bias=True):
with tf.variable_scope(name):
w = tf.get_variable("w",[5,5,inputFeatures, outputFeatures], initializer=tf.truncated_normal_initializer(stddev=0.02), trainable=train)
b = tf.get_variable("b",[outputFeatures], initializer=tf.constant_initializer(0.0))
if bias:
conv = tf.nn.conv2d(x, w, strides=[1,2,2,1], padding="SAME") + b
else:
conv = tf.nn.conv2d(x, w, strides=[1,2,2,1], padding="SAME")
return conv
def conv_transpose(x, outputShape, name):
with tf.variable_scope(name):
# h, w, out, in
w = tf.get_variable("w",[5,5, outputShape[-1], x.get_shape()[-1]], initializer=tf.truncated_normal_initializer(stddev=0.02))
b = tf.get_variable("b",[outputShape[-1]], initializer=tf.constant_initializer(0.0))
convt = tf.nn.conv2d_transpose(x, w, output_shape=outputShape, strides=[1,2,2,1])
return convt
# leaky reLu unit
def lrelu(x, leak=0.2, name="lrelu"):
with tf.variable_scope(name):
f1 = 0.5 * (1 + leak)
f2 = 0.5 * (1 - leak)
return f1 * x + f2 * abs(x)
# fully-conected layer
def dense(x, inputFeatures, outputFeatures, scope=None, with_w=False):
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [inputFeatures, outputFeatures], tf.float32, tf.random_normal_initializer(stddev=0.02))
bias = tf.get_variable("bias", [outputFeatures], initializer=tf.constant_initializer(0.0))
if with_w:
return tf.matmul(x, matrix) + bias, matrix, bias
else:
return tf.matmul(x, matrix) + bias