forked from zhuanhao-wu/nkuacmtpl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.h
198 lines (184 loc) · 3.94 KB
/
utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#ifndef _ACM_UTILS
#define _ACM_UTILS
namespace acm {
namespace utils {
typedef long long ll;
using namespace std;
ll add(ll a, ll b, ll mod) {
ll res = a + b;
while(res < 0) res += mod;
while(res >= mod) res -= mod;
return res;
}
// untested
// a * b % mod
// O(logb)
ll qmul(ll a, ll b, ll mod) {
a %= mod;
b %= mod;
ll ans = 0;
while(b) {
if(b & 1) {
ans = (ans + a)%mod;
}
a = (a+ a)%mod;
b >>= 1;
}
return ans;
}
// untested
// a^n % mod
// O(logn)
ll qpow(ll a, ll n, ll mod) {
a %= mod;
ll ans = 1LL;
while(n) {
if(n & 1) ans = (ans* a% mod);
a = (a* a% mod);
n >>= 1;
}
return ans;
}
// untested
ll gcd(ll a, ll b) {
if(a < 0) a = -a;
if(b < 0) b = -b;
if(a < b) swap(a, b);
while(b) {
ll c = b;
b = a % b;
a = c;
}
return a;
}
// untested
ll extgcd(ll a, ll b, ll& x, ll& y)
{
if (b == 0) { x = 1LL; y = 0; return a; }
ll d = extgcd(b, a % b, x, y);
ll t = x; x = y; y = t - a / b * y;
return d;
}
// untested
// p should be a prime and gcd(a, p) = 1
// based on Fermat Theory(费马小定理)
inline ll reverse(ll a, ll p) {
return qpow(a, p - 2, p);
}
// 线性同余方程(x === A[i] (mod M[i])), M[i] 不一定互质, 但是需要lcm不太大
ll M[maxn], A[maxn];
int N;
ll lcm[maxn];
void init() {
ll g;
lcm[0] = M[0];
rep(i, 1, N) {
g = gcd(lcm[i - 1], M[i]);
lcm[i] = lcm[i - 1] * (M[i] / g);
}
}
ll linear_mod_equation() {
init();
ll a = A[0];
rep(i, 1, N) {
ll g, k0, k, _;
g = extgcd(lcm[i - 1], M[i],k0,_);
if((A[i] - a) % g != 0) return -1;
k0 = (k0 * ((A[i] - a) / g));
while(k0 < 0) k0 += M[i];
k0 %= M[i];
a = ((k0 * lcm[i - 1] + a) + lcm[i]) % lcm[i];
}
return a == 0 ? lcm[N - 1] : a;
}
// ******************************************
// Miller Rabin 素性检测和 pollard rho分解整数
// ******************************************
bool randomized = false;
// n - 1 = x * 2 ^ t, a^(n - 1) = a^(x*2^t) = 1 mod (n)
bool is_composite(ll a, ll n, ll x, ll t) {
ll ret = qpow(a, x, n);
ll last = ret;
for(int i = 1; i <= t; i++) {
ret = qmul(ret, ret, n);
// 合数有非平凡根(二次同余的解)
if(ret == 1 && last != 1 && last != n - 1) return true;
last = ret;
}
if(ret != 1) return true;
return false;
}
// S 测试次数
bool mlrb(ll n, int S = 20) {
if(!randomized) { srand(time(NULL)); randomized = true; }
if(n < 2) return false;
if(n == 2) return true;
if((n&1) == 0) return false; // even
ll x = n - 1, t = 0;
while((x&1) == 0) { x >>= 1; t++; }
for(int i = 0; i < S; i++) {
ll a = rand() % (n - 1) + 1;
if(is_composite(a, n, x, t)) return false;
}
return true;
}
// ***********
// pollard_rho
// ***********
// 分解后无序, 如有必要需要排序!!!!
ll factor[100];
int tot;
ll pollard_rho(ll n) {
if(!randomized) { srand(time(0)); randomized = true; }
ll i = 1, k = 2;
ll x0 = rand() % n;
ll y = x0;
ll c = (rand() % (n - 1)) + 1;
while(1) {
i++;
x0 = qmul(x0, x0, n);
ll d = gcd(y - x0, n);
if(d != 1 && d != n) return d;
if(y == x0) return n;
if(i == k) {
y = x0;
k += k;
}
}
}
void find_factor(ll n) {
if(mlrb(n)) {
factor[tot++] = n;
return;
}
ll p = n;
while(p >= n) p = pollard_rho(p);
find_factor(p);
find_factor(n / p);
}
bool vis[maxn + 10];
int prime[maxn + 10];
int mu[maxn + 10], cnt = 0;
void sieve() {
memset(vis, 0, sizeof vis);
mu[1] = 1;
rep(i, 2, maxn) {
if(!vis[i]) {
prime[cnt++] = i;
mu[i] = -1;
}
rep(j, 0, cnt) {
if(ll(i) * prime[j] > maxn) break;
vis[i * prime[j]] = true;
if(i % prime[j] == 0) {
mu[i * prime[j]] = 0;
break;
} else { // i is prime
mu[i * prime[j]] = -mu[i];
}
}
}
}
}
}
#endif