-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathScriptGLS_Bearing(Climateonly).R
138 lines (104 loc) · 12.5 KB
/
ScriptGLS_Bearing(Climateonly).R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# 1. read files
# 3. GLS with spatial autocorrelation. Assuming gaussian correlation kernel ("corGaus")
rm(list=ls(all=TRUE))
#library(rgdal)
library(fields)
library(nlme)
library(ncf)
library(AICcmodavg)
library(modEvA)
rm(list=ls(all=TRUE))
data <- read.table("Megafauna_(Climate)Bearing_v4(0kaLag_withSD).csv", sep=",", header=T) ### Modifier ici en header=T (ligne suivante aussi)
mdat<-mean(data$Extinction);SCR<-sum((data$Extinction - mdat)**2)#calcul de la somme des residue sur les donnees
output<-matrix(0,29,4);Vargls<-matrix(0,29,1);i<-1;Cand.models <- list( );i
#1
Cand.models[[i]] <-gls.Tx <- gls(Extinction ~ Temp, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.Tx, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.Tx);output[i,3]<-BIC(gls.Tx);output[i,4]<-gls.Tx$logLik;
sdat<-predict(gls.Tx);SCR2<-sum(gls.Tx$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#2
Cand.models[[i]] <-gls.TxP <- gls(Extinction ~ Temp + Prec, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.TxP, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.TxP);output[i,3]<-BIC(gls.TxP);output[i,4]<-gls.TxP$logLik;
sdat<-predict(gls.TxP);SCR2<-sum(gls.TxP$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#3
Cand.models[[i]] <-gls.TxPDD <- gls(Extinction ~ Temp + Prec + EminP, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.TxPDD, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.TxPDD);output[i,3]<-BIC(gls.TxPDD);output[i,4]<-gls.TxPDD$logLik;
sdat<-predict(gls.TxPDD);SCR2<-sum(gls.TxPDD$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#4
Cand.models[[i]] <-gls.TxPDDFD <- gls(Extinction ~ Temp + Prec + EminP + Npp, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.TxPDDFD, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.TxPDDFD);output[i,3]<-BIC(gls.TxPDDFD);output[i,4]<-gls.TxPDDFD$logLik;
sdat<-predict(gls.TxPDDFD);SCR2<-sum(gls.TxPDDFD$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#5
Cand.models[[i]] <-gls.TxPDDFDGS <- gls(Extinction ~ Temp + Prec + EminP + Npp + Dfrac, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.TxPDDFDGS, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.TxPDDFDGS);output[i,3]<-BIC(gls.TxPDDFDGS);output[i,4]<-gls.TxPDDFDGS$logLik;
sdat<-predict(gls.TxPDDFDGS);SCR2<-sum(gls.TxPDDFDGS$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#6
Cand.models[[i]] <-gls.TxDD <- gls(Extinction ~ Temp + EminP, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.TxDD, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.TxDD);output[i,3]<-BIC(gls.TxDD);output[i,4]<-gls.TxDD$logLik;
sdat<-predict(gls.TxDD);SCR2<-sum(gls.TxDD$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#7
Cand.models[[i]] <-gls.TxDDFD <- gls(Extinction ~ Temp + EminP + Npp, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.TxDDFD, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.TxDDFD);output[i,3]<-BIC(gls.TxDDFD);output[i,4]<-gls.TxDDFD$logLik;
sdat<-predict(gls.TxDDFD);SCR2<-sum(gls.TxDDFD$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#8
Cand.models[[i]] <-gls.TxDDFDGS <- gls(Extinction ~ Temp + EminP + Npp + Dfrac, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.TxDDFDGS, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.TxDDFDGS);output[i,3]<-BIC(gls.TxDDFDGS);output[i,4]<-gls.TxDDFDGS$logLik;
sdat<-predict(gls.TxDDFDGS);SCR2<-sum(gls.TxDDFDGS$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#9
Cand.models[[i]] <-gls.TxFD <- gls(Extinction ~ Temp + Npp, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.TxFD, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.TxFD);output[i,3]<-BIC(gls.TxFD);output[i,4]<-gls.TxFD$logLik;
sdat<-predict(gls.TxFD);SCR2<-sum(gls.TxFD$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#10
Cand.models[[i]] <-gls.TxFDGS <- gls(Extinction ~ Temp + Npp + Dfrac, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.TxFDGS, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.TxFDGS);output[i,3]<-BIC(gls.TxFDGS);output[i,4]<-gls.TxFDGS$logLik;
sdat<-predict(gls.TxFDGS);SCR2<-sum(gls.TxFDGS$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#11
Cand.models[[i]] <-gls.TxPFD <- gls(Extinction ~ Temp + Prec + Npp, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.TxPFD, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.TxPFD);output[i,3]<-BIC(gls.TxPFD);output[i,4]<-gls.TxPFD$logLik;
sdat<-predict(gls.TxPFD);SCR2<-sum(gls.TxPFD$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#12
Cand.models[[i]] <-gls.TxPFDGS <- gls(Extinction ~ Temp + Prec + Npp + Dfrac, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.TxPFDGS, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.TxPFDGS);output[i,3]<-BIC(gls.TxPFDGS);output[i,4]<-gls.TxPFDGS$logLik;
sdat<-predict(gls.TxPFDGS);SCR2<-sum(gls.TxPFDGS$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#13
Cand.models[[i]] <-gls.TxPGS <- gls(Extinction ~ Temp + Prec + Dfrac, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.TxPGS, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.TxPGS);output[i,3]<-BIC(gls.TxPGS);output[i,4]<-gls.TxPGS$logLik;
sdat<-predict(gls.TxPGS);SCR2<-sum(gls.TxPGS$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#14
Cand.models[[i]] <-gls.P <- gls(Extinction ~ Prec, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.P, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.P);output[i,3]<-BIC(gls.P);output[i,4]<-gls.P$logLik;
sdat<-predict(gls.P);SCR2<-sum(gls.P$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#15
Cand.models[[i]] <-gls.PDD <- gls(Extinction ~ Prec + EminP, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.PDD, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.PDD);output[i,3]<-BIC(gls.PDD);output[i,4]<-gls.PDD$logLik;
sdat<-predict(gls.PDD);SCR2<-sum(gls.PDD$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#16
Cand.models[[i]] <-gls.PDDFD <- gls(Extinction ~ Prec + EminP + Npp, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.PDDFD, return.K = FALSE, second.ord = TRUE, nobs = NULL) ;output[i,2]<-AIC(gls.PDDFD);output[i,3]<-BIC(gls.PDDFD);output[i,4]<-gls.PDDFD$logLik;
sdat<-predict(gls.PDDFD);SCR2<-sum(gls.PDDFD$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#17
Cand.models[[i]] <-gls.PDDFDGS <- gls(Extinction ~ Prec + EminP + Npp + Dfrac, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.PDDFDGS, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.PDDFDGS);output[i,3]<-BIC(gls.PDDFDGS);output[i,4]<-gls.PDDFDGS$logLik;
sdat<-predict(gls.PDDFDGS);SCR2<-sum(gls.PDDFDGS$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#18
Cand.models[[i]] <-gls.PDDGS <- gls(Extinction ~ Prec + EminP + Dfrac, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.PDDGS, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.PDDGS);output[i,3]<-BIC(gls.PDDGS);output[i,4]<-gls.PDDGS$logLik;
sdat<-predict(gls.PDDGS);SCR2<-sum(gls.PDDGS$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#19
Cand.models[[i]] <-gls.PFD <- gls(Extinction ~ Prec + Npp, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.PFD, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.PFD);output[i,3]<-BIC(gls.PFD);output[i,4]<-gls.PFD$logLik;
sdat<-predict(gls.PFD);SCR2<-sum(gls.PFD$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#20
Cand.models[[i]] <-gls.PFDGS <- gls(Extinction ~ Prec + Npp + Dfrac, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.PFDGS, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.PFDGS);output[i,3]<-BIC(gls.PFDGS);output[i,4]<-gls.PFDGS$logLik;
sdat<-predict(gls.PFDGS);SCR2<-sum(gls.PFDGS$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#21
Cand.models[[i]] <-gls.PGS <- gls(Extinction ~ Prec + Dfrac, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.PGS, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.PGS);output[i,3]<-BIC(gls.PGS);output[i,4]<-gls.PGS$logLik;
sdat<-predict(gls.PGS);SCR2<-sum(gls.PGS$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#22
Cand.models[[i]] <-gls.DD <- gls(Extinction ~ EminP, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.DD, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.DD);output[i,3]<-BIC(gls.DD);output[i,4]<-gls.DD$logLik;
sdat<-predict(gls.DD);SCR2<-sum(gls.DD$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#23
Cand.models[[i]] <-gls.DDFD <- gls(Extinction ~ EminP + Npp, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.DDFD, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.DDFD);output[i,3]<-BIC(gls.DDFD);output[i,4]<-gls.DDFD$logLik;
sdat<-predict(gls.DDFD);SCR2<-sum(gls.DDFD$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#24
Cand.models[[i]] <-gls.DDFDGS <- gls(Extinction ~ EminP + Npp + Dfrac, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.DDFDGS, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.DDFDGS);output[i,3]<-BIC(gls.DDFDGS);output[i,4]<-gls.DDFDGS$logLik;
sdat<-predict(gls.DDFDGS);SCR2<-sum(gls.DDFDGS$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#25
Cand.models[[i]] <-gls.DDGS <- gls(Extinction ~ EminP + Dfrac, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.DDGS, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.DDGS);output[i,3]<-BIC(gls.DDGS);output[i,4]<-gls.DDGS$logLik;
sdat<-predict(gls.DDGS);SCR2<-sum(gls.DDGS$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#26
Cand.models[[i]] <-gls.FD <- gls(Extinction ~ Npp, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.FD, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.FD);output[i,3]<-BIC(gls.FD);output[i,4]<-gls.FD$logLik;
sdat<-predict(gls.FD);SCR2<-sum(gls.FD$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#27
Cand.models[[i]] <-gls.FDGS <- gls(Extinction ~ Npp + Dfrac, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.FDGS, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.FDGS);output[i,3]<-BIC(gls.FDGS);output[i,4]<-gls.FDGS$logLik;
sdat<-predict(gls.FDGS);SCR2<-sum(gls.FDGS$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#28
Cand.models[[i]] <-gls.GS <- gls(Extinction ~ Dfrac, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.GS, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.GS);output[i,3]<-BIC(gls.GS);output[i,4]<-gls.GS$logLik;
sdat<-predict(gls.GS);SCR2<-sum(gls.GS$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR; i<- i + 1;i
#29
Cand.models[[i]] <-gls.Int <- gls(Extinction ~ 1, data=data, correlation=corGaus(form=~Lon+Lat), method="ML",verbose=T);output[i,1]<-AICc(gls.Int, return.K = FALSE, second.ord = TRUE, nobs = NULL);output[i,2]<-AIC(gls.Int);output[i,3]<-BIC(gls.Int);output[i,4]<-gls.Int$logLik;
sdat<-predict(gls.Int);SCR2<-sum(gls.Int$residuals)**2;Vargls[i,1]<-100*(SCR-SCR2)/SCR;
write.table(output,"AICweight_statsBearingGrad(Climate)_v2.csv",sep = " ",dec = ".",row.names = FALSE);
stat<-aictab(Cand.models, modnames = NULL, second.ord = TRUE, nobs = NULL,sort = TRUE)
write.table(stat,"ModelClassification_statsBearingGrad(Climate)_v2.csv",sep = " ",dec = ".",row.names = FALSE);
write.table(Vargls,"VarianceExplainedBearingGrad(Climate)_v2.csv",sep = " ",dec = ".",row.names = FALSE);