-
Notifications
You must be signed in to change notification settings - Fork 371
/
Copy pathback_chart.py
254 lines (213 loc) · 9.74 KB
/
back_chart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#-*- coding: utf-8 -*-
#
# FinaceDataReader chart.py
# (c)2018-2024 FinaceData.KR
from FinanceDataReader.chart import (plot, candle, line)
# import numpy as np
# import pandas as pd
# from datetime import datetime, date
# import itertools
# plotly_install_msg = f'''
# {'-' * 80}
# FinanceDataReade.chart.plot() dependen on plotly
# plotly not installed please install as follows
# pip install plotly
# FinanceDataReade.chart.plot()는 plotly에 의존성이 있습니다.
# 명령창에서 다음과 같이 plotly를 설치하세요
# pip install plotly
# '''
# try:
# import plotly.graph_objects as go
# from plotly.subplots import make_subplots
# except ModuleNotFoundError as e:
# raise ModuleNotFoundError(plotly_install_msg)
# ## holiday Calendar
# holidays_url_base = 'https://raw.githubusercontent.com/FinanceData/FinanceDataReader/master/calendars'
# holidays_krx,holidays_hyse = None, None
# ## Chart plot
# def plot(df, tools=None, layout=None):
# '''
# plot candle chart with DataFrame
# * df: OHLCV data(DataFrame)
# * updates: additional chart configurations
# '''
# global holidays_krx, holidays_hyse
# if holidays_krx is None:
# holidays_krx = pd.read_csv(f'{holidays_url_base}/holidays-krx.csv')['date'].values
# if holidays_hyse is None:
# holidays_hyse = pd.read_csv(f'{holidays_url_base}/holidays-nyse.csv')['date'].values
# tools = {'SMA': [10, 20, 60]} if not tools else tools
# layout = dict() if not layout else layout
# x_ticks = df.index
# change = df["Close"].pct_change()
# oc_ratio = (df["Close"]-df["Open"])/df["Open"]
# oh_ratio = (df["High"]-df["Open"])/df["Open"]
# hover_text = [f'DoD: {chg:.1%} OC: {oc:.1%}, OH: {oh:.1%}' for chg, oc, oh in zip(change, oc_ratio, oh_ratio)]
# # OHLC candle chart
# candle = go.Candlestick(
# x=x_ticks,
# open=df["Open"], high=df["High"], low=df["Low"], close=df["Close"],
# name='',
# text = hover_text,
# increasing_fillcolor = 'red',
# decreasing_fillcolor = 'blue',
# increasing_line_color = 'red',
# decreasing_line_color = 'blue',
# increasing_line_width = 1.5,
# decreasing_line_width = 1.5,
# showlegend = False,
# opacity=0.75,
# )
# # volume bar chart
# vol_colors = np.where(df['Close'].shift(1) > df['Close'], 'blue', 'red')
# vol_bar = go.Bar(
# x=x_ticks,
# y=df['Volume'],
# showlegend=False,
# name='',
# opacity = 0.5,
# marker={'color': vol_colors},
# )
# fig = make_subplots(rows=2, cols=1,
# shared_xaxes=True,
# vertical_spacing=0,
# row_width=[0.3, 0.7])
# fig.add_trace(candle, row=1, col=1)
# fig.add_trace(vol_bar, row=2, col=1)
# # hide rangeslider
# fig.update_xaxes(rangeslider_visible=False)
# # holidays
# holidays = holidays_krx
# if df.attrs.get('exchange') != 'KRX':
# holidays = holidays_hyse
# # Remove non-business days
# fig.update_xaxes(rangebreaks = [
# dict(bounds=['sat','mon']), # remove weekend
# dict(values=holidays), # remove non biz days
# # dict(bounds=[15.5, 9], pattern='hour'), # remove non biz hours
# ])
# # draw axes and grid
# fig.update_xaxes(showline=True, linewidth=1, linecolor='black', gridcolor='lightgray')
# fig.update_yaxes(showline=True, linewidth=1, linecolor='black', gridcolor='lightgray')
# # x-axis tick format
# fig.update_xaxes(tickformat='%Y-%m-%d', row=2, col=1)
# fig.update_xaxes(tickangle=45)
# # y-axis tick format
# fig.update_yaxes(tickformat=',', row='all', col=1)
# # spikes
# fig.update_xaxes(showspikes=True, spikethickness=1, spikedash="dot", spikecolor="lightgray", spikemode="across", spikesnap='cursor')
# # fig.update_traces(xaxis="x2") # binding x-axis
# # bgcolor
# fig.update_layout(plot_bgcolor='white')
# fig.update_layout(paper_bgcolor='white')
# ## tools (tools: indicators and annotations)
# # available_tools
# available_tools = ['SMA', 'EMA', 'HLINE', 'VLINE', 'VRECT']
# for key in tools:
# if key.upper() not in available_tools:
# raise ValueError(f"Unsupport tool: {key}")
# tools = {key.upper(): tools[key] for key in tools} # keys to upper case
# # default tools
# # default_ma_params = [10, 20, 60] # default moving averages params
# # if all(x not in tools.keys() for x in ['SMA', 'EMA']):
# # tools['SMA'] = default_ma_params
# line_dashes = ['solid', 'dot', 'dash', 'longdash', 'dashdot', 'longdashdot']
# line_colors = ['darkmagenta', 'gold', 'limegreen', 'maroon', 'chocolate', 'seagreen', 'coral']
# line_style_cycler = itertools.cycle(itertools.product(line_dashes, line_colors))
# default_line_width = 0.75
# if 'SMA' in tools: # SMA: simple moving average
# args = tools.pop('SMA')
# for arg in args:
# line_dash, line_color = next(line_style_cycler)
# ma_args = dict()
# ma_args['line_width'] = default_line_width
# if type(arg) == int:
# window = arg
# ma_args['line_dash'] = line_dash
# ma_args['line_color'] = line_color
# ma_args['line_width'] = default_line_width
# elif type(arg) == dict:
# window = arg['window']
# ma_args['line_dash'] = arg['line_dash'] if 'line_dash' in arg else line_dash
# ma_args['line_color'] = arg['line_color'] if 'line_color' in arg else line_color
# ma_args['line_width'] = arg['line_width'] if 'line_width' in arg else default_line_width
# ma_price = df['Close'].rolling(window).mean().round(0)
# ma_args['x'] = ma_price.index
# ma_args['y'] = ma_price
# ma_args['name'] = f'SMA_{window}'
# fig.add_trace(go.Scatter(**ma_args), row=1, col=1)
# if 'EMA' in tools: # EMA: exponential moving average
# args = tools.pop('EMA')
# for arg in args:
# line_dash, line_color = next(line_style_cycler)
# ma_args = dict()
# ma_args['line_width'] = default_line_width
# if type(arg) == int:
# window = arg
# ma_args['line_dash'] = line_dash
# ma_args['line_color'] = line_color
# ma_args['line_width'] = default_line_width
# elif type(arg) == dict:
# window = arg['window']
# ma_args.update(arg)
# ma_args['line_dash'] = arg['line_dash'] if 'line_dash' in arg else line_dash
# ma_args['line_color'] = arg['line_color'] if 'line_color' in arg else line_color
# ma_args['line_width'] = arg['line_width'] if 'line_width' in arg else default_line_width
# ma_price = df['Close'].ewm(span=window).mean()
# ma_args['x'] = ma_price.index
# ma_args['y'] = ma_price
# ma_args['name'] = f'EMA_{window}'
# fig.add_trace(go.Scatter(**ma_args), row=1, col=1)
# if 'HLINE' in tools: # HLINE: Horizontal line
# hline_args = dict(line_width=1.5, line_dash="dot", line_color="tomato", layer="below")
# hline_value = tools.pop('HLINE')
# if hasattr(hline_value, '__iter__'):
# for hline in hline_value:
# if type(hline) in [int, float]:
# hline_args['y'] = hline
# elif type(hline) == dict:
# hline_args.update(hline)
# else:
# raise ValueError("'HLINE' must be list of str or list of dict")
# fig.add_hline(**hline_args)
# else:
# hline_args['y'] = hline_value
# fig.add_hline(**hline_args) # just one value
# if 'VLINE' in tools: # VLINE: vertical line
# vline_args = dict(line_width=1.5, line_dash="dot", line_color="tomato", layer="below")
# vline_value = tools.pop('VLINE')
# if hasattr(vline_value, '__iter__'):
# for vline in vline_value:
# if type(vline) in [pd.Timestamp, str, datetime, date]:
# vline_args['x'] = pd.to_datetime(vline).timestamp() * 1000
# elif type(vline) == dict:
# vline_args.update(vline)
# vline_args['x'] = pd.to_datetime(vline_args['x']).timestamp() * 1000
# else:
# raise ValueError("'VLINE' must be list of str or list of dict")
# fig.add_vline(**vline_args)
# else:
# vline_args['y'] = vline_value
# fig.add_hline(**vline_args) # just one value
# if 'VRECT' in tools: # VRECT: highlighting period
# vrect_list = tools.pop('VRECT') if 'VRECT' in tools else {}
# for vrect in vrect_list:
# vrect_args = dict(fillcolor="LightSalmon", opacity=0.3, layer="below", line_width=0)
# if type(vrect) == tuple:
# vrect_args['x0'] = str(vrect[0])
# vrect_args['x1'] = str(vrect[1])
# elif type(vrect) == dict:
# vrect_args.update(vrect)
# else:
# raise ValueError("'vrect' must be list of tuple or list of dict")
# fig.add_vrect(**vrect_args)
# ## update_layout
# layout_defaults = {
# 'hovermode': 'x', # available hovermodes: 'closest', 'x', 'x unified', 'y', 'y unified'
# 'margin': go.layout.Margin(l=0, r=0, b=0, t=0), # margins
# 'width': 1280,
# 'height': 640,
# }
# layout.update(layout_defaults)
# fig.update_layout(layout)
# return fig