-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_univad.py
368 lines (329 loc) · 11.2 KB
/
test_univad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import argparse
import logging
import os
import numpy as np
import torch
import torchvision
import threading
import torchvision.transforms as transforms
from tabulate import tabulate
from sklearn.metrics import roc_auc_score
from tqdm import tqdm
import math
from PIL import Image
from prefetch_generator import BackgroundGenerator
from UniVAD import UniVAD
from datasets.mvtec import MVTecDataset
from datasets.visa import VisaDataset
from datasets.mvtec_loco import MVTecLocoDataset
from datasets.brainmri import BrainMRIDataset
from datasets.his import HISDataset
from datasets.resc import RESCDataset
from datasets.liverct import LiverCTDataset
from datasets.chestxray import ChestXrayDataset
from datasets.oct17 import OCT17Dataset
class DataLoaderX(torch.utils.data.DataLoader):
def __iter__(self):
return BackgroundGenerator(super().__iter__())
def resize_tokens(x):
B, N, C = x.shape
x = x.view(B, int(math.sqrt(N)), int(math.sqrt(N)), C)
return x
def cal_score(obj):
table = []
gt_px = []
pr_px = []
gt_sp = []
pr_sp = []
table.append(obj)
for idxes in range(len(results["cls_names"])):
if results["cls_names"][idxes] == obj:
gt_px.append(results["imgs_masks"][idxes].squeeze(1).numpy())
pr_px.append(results["anomaly_maps"][idxes])
gt_sp.append(results["gt_sp"][idxes])
pr_sp.append(results["pr_sp"][idxes])
gt_px = np.array(gt_px)
gt_sp = np.array(gt_sp)
pr_px = np.array(pr_px)
pr_sp = np.array(pr_sp)
auroc_sp = roc_auc_score(gt_sp, pr_sp)
auroc_px = roc_auc_score(gt_px.ravel(), pr_px.ravel())
table.append(str(np.round(auroc_sp * 100, decimals=1)))
table.append(str(np.round(auroc_px * 100, decimals=1)))
table_ls.append(table)
auroc_sp_ls.append(auroc_sp)
auroc_px_ls.append(auroc_px)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Test", add_help=True)
parser.add_argument("--image_size", type=int, default=448, help="image size")
parser.add_argument("--k_shot", type=int, default=1, help="k-shot")
parser.add_argument(
"--dataset", type=str, default="mvtec", help="train dataset name"
)
parser.add_argument(
"--data_path",
type=str,
default="./data/mvtec",
help="path to test dataset",
)
parser.add_argument(
"--save_path", type=str, default=f"./results/", help="path to save results"
)
parser.add_argument(
"--round", type=int, default=3, help="round"
)
parser.add_argument("--class_name", type=str, default="None", help="device")
parser.add_argument("--device", type=str, default="cuda", help="device")
args = parser.parse_args()
dataset_name = args.dataset
dataset_dir = args.data_path
device = args.device
k_shot = args.k_shot
image_size = args.image_size
save_path = args.save_path + "/" + dataset_name + "/"
if not os.path.exists(save_path):
os.makedirs(save_path)
txt_path = os.path.join(save_path, "log.txt")
# logger
root_logger = logging.getLogger()
for handler in root_logger.handlers[:]:
root_logger.removeHandler(handler)
root_logger.setLevel(logging.WARNING)
logger = logging.getLogger("test")
formatter = logging.Formatter(
"%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s",
datefmt="%y-%m-%d %H:%M:%S",
)
logger.setLevel(logging.INFO)
file_handler = logging.FileHandler(txt_path, mode="w")
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
# record parameters
for arg in vars(args):
logger.info(f"{arg}: {getattr(args, arg)}")
UniVAD_model = UniVAD(image_size=args.image_size).to(device)
# dataset
transform = transforms.Compose(
[
transforms.Resize((image_size, image_size)),
transforms.ToTensor(),
]
)
gaussion_filter = torchvision.transforms.GaussianBlur(3, 4.0)
if dataset_name == "mvtec":
test_data = MVTecDataset(
root=dataset_dir,
transform=transform,
target_transform=transform,
aug_rate=-1,
mode="test",
)
elif dataset_name == "visa":
test_data = VisaDataset(
root=dataset_dir,
transform=transform,
target_transform=transform,
mode="test",
)
elif dataset_name == "mvtec_loco":
test_data = MVTecLocoDataset(
root=dataset_dir,
transform=transform,
target_transform=transform,
aug_rate=-1,
mode="test",
)
elif dataset_name == "brainmri":
test_data = BrainMRIDataset(
root="./data/BrainMRI",
transform=transform,
target_transform=transform,
aug_rate=-1,
mode="test",
)
elif dataset_name == "his":
test_data = HISDataset(
root="./data/HIS",
transform=transform,
target_transform=transform,
aug_rate=-1,
mode="test",
)
elif dataset_name == "resc":
test_data = RESCDataset(
root="./data/RESC",
transform=transform,
target_transform=transform,
aug_rate=-1,
mode="test",
)
elif dataset_name == "chestxray":
test_data = ChestXrayDataset(
root="./data/ChestXray",
transform=transform,
target_transform=transform,
aug_rate=-1,
mode="test",
)
elif dataset_name == "oct17":
test_data = OCT17Dataset(
root="./data/OCT17",
transform=transform,
target_transform=transform,
aug_rate=-1,
mode="test",
)
elif dataset_name == "liverct":
test_data = LiverCTDataset(
root="./data/LiverCT",
transform=transform,
target_transform=transform,
aug_rate=-1,
mode="test",
)
else:
raise NotImplementedError("Dataset not supported")
test_dataloader = DataLoaderX(
test_data, batch_size=1, shuffle=False, num_workers=8, pin_memory=True
)
with torch.no_grad():
obj_list = [x.replace("_", " ") for x in test_data.get_cls_names()] + ["object"]
results = {}
results["cls_names"] = []
results["imgs_masks"] = []
results["anomaly_maps"] = []
results["gt_sp"] = []
results["pr_sp"] = []
cls_last = None
image_transform = transforms.Compose(
[transforms.Resize((image_size, image_size)), transforms.ToTensor()]
)
for items in tqdm(test_dataloader):
image = items["img"].to(device)
image_pil = items["img_pil"]
image_path = items["img_path"][0]
if args.class_name != "None":
if args.class_name not in image_path:
continue
cls_name = items["cls_name"][0]
results["cls_names"].append(cls_name)
gt_mask = items["img_mask"]
gt_mask[gt_mask > 0.5], gt_mask[gt_mask <= 0.5] = 1, 0
results["imgs_masks"].append(gt_mask) # px
results["gt_sp"].append(items["anomaly"].item())
if cls_name != cls_last:
if dataset_name == "mvtec":
normal_image_paths = [
"./data/mvtec/"
+ cls_name.replace(" ", "_")
+ "/train/good/"
+ str(i).zfill(3)
+ ".png"
for i in range(args.round, args.round + k_shot)
]
elif dataset_name == "mvtec_loco":
normal_image_paths = [
"./data/mvtec_loco/"
+ cls_name.replace(" ", "_")
+ "/train/good/"
+ str(i).zfill(3)
+ ".png"
for i in range(args.round, args.round + k_shot)
]
elif dataset_name == "visa":
if cls_name.replace(" ", "_") in [
"capsules",
"cashew",
"chewinggum",
"fryum",
"pipe_fryum",
]:
normal_image_paths = [
"./data/VisA_pytorch/1cls/"
+ cls_name.replace(" ", "_")
+ "/train/good/"
+ str(i).zfill(3)
+ ".JPG"
for i in range(args.round, args.round + k_shot)
]
else:
normal_image_paths = [
"./data/VisA_pytorch/1cls/"
+ cls_name.replace(" ", "_")
+ "/train/good/"
+ str(i).zfill(4)
+ ".JPG"
for i in range(args.round, args.round + k_shot)
]
elif dataset_name in [
"his",
"oct17",
"chestxray",
"brainmri",
"liverct",
"resc",
]:
dir = (
"./data/"
+ cls_name.replace(" ", "_")
+ "/train/good"
)
files = sorted(os.listdir(dir))[:k_shot]
normal_image_paths = [os.path.join(dir, file) for file in files]
# normal_image_path = normal_image_paths[:k_shot]
normal_images = torch.cat(
[
image_transform(Image.open(x).convert("RGB")).unsqueeze(0)
for x in normal_image_paths
],
dim=0,
).to(device)
setup_data = {
"few_shot_samples": normal_images,
"dataset_category": cls_name.replace(" ", "_"),
"image_path": normal_image_paths,
}
UniVAD_model.setup(setup_data)
cls_last = cls_name
with torch.no_grad():
pred_value = UniVAD_model(image, image_path, image_pil)
anomaly_score, anomaly_map = (
pred_value["pred_score"],
pred_value["pred_mask"],
)
results["anomaly_maps"].append(anomaly_map.detach().cpu().numpy())
overall_anomaly_score = anomaly_score.item()
results["pr_sp"].append(overall_anomaly_score)
# metrics
table_ls = []
auroc_sp_ls = []
auroc_px_ls = []
threads = [None] * 20
idx = 0
for obj in tqdm(obj_list):
threads[idx] = threading.Thread(target=cal_score, args=(obj,))
threads[idx].start()
idx += 1
for i in range(idx):
threads[i].join()
# logger
table_ls.append(
[
"mean",
str(np.round(np.mean(auroc_sp_ls) * 100, decimals=1)),
str(np.round(np.mean(auroc_px_ls) * 100, decimals=1)),
]
)
results = tabulate(
table_ls,
headers=[
"objects",
"auroc_sp",
"auroc_px",
],
tablefmt="pipe",
)
logger.info("\n%s", results)