-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathinference.py
169 lines (135 loc) · 5.86 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import librosa
import matplotlib.pyplot as plt
import os
import json
import math
import requests
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
import commons
import utils
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
import langdetect
from scipy.io.wavfile import write
import re
from scipy import signal
'''
from phonemizer.backend.espeak.wrapper import EspeakWrapper
_ESPEAK_LIBRARY = 'C:\Program Files\eSpeak NG\libespeak-ng.dll'
EspeakWrapper.set_library(_ESPEAK_LIBRARY)
'''
# - paths
path_to_config = "put_your_config_path_here" # path to .json
path_to_model = "put_your_model_path_here" # path to G_xxxx.pth
#- text input
input = "I try to get the waiter's attention by blinking in morse code"
# check device
if torch.cuda.is_available() is True:
device = "cuda:0"
else:
device = "cpu"
hps = utils.get_hparams_from_file(path_to_config)
if "use_mel_posterior_encoder" in hps.model.keys() and hps.model.use_mel_posterior_encoder == True:
print("Using mel posterior encoder for VITS2")
posterior_channels = 80 # vits2
hps.data.use_mel_posterior_encoder = True
else:
print("Using lin posterior encoder for VITS1")
posterior_channels = hps.data.filter_length // 2 + 1
hps.data.use_mel_posterior_encoder = False
net_g = SynthesizerTrn(
len(symbols),
posterior_channels,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers, #- >0 for multi speaker
**hps.model).to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(path_to_model, net_g, None)
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def langdetector(text): # from PolyLangVITS
try:
lang = langdetect.detect(text).lower()
if lang == 'ko':
return f'[KO]{text}[KO]'
elif lang == 'ja':
return f'[JA]{text}[JA]'
elif lang == 'en':
return f'[EN]{text}[EN]'
elif lang == 'zh-cn':
return f'[ZH]{text}[ZH]'
else:
return text
except Exception as e:
return text
speed = 1
sid = 0
output_dir = 'output'
os.makedirs(output_dir, exist_ok=True)
speakers = [name for sid, name in enumerate(hps.speakers) if name != "None"]
def vcss(inputstr): # single
fltstr = re.sub(r"[\[\]\(\)\{\}]", "", inputstr)
#fltstr = langdetector(fltstr) #- optional for cjke/cjks type cleaners
stn_tst = get_text(fltstr, hps)
with torch.no_grad():
x_tst = stn_tst.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1 / speed)[0][
0, 0].data.cpu().float().numpy()
write(f'./{output_dir}/output_{sid}.wav', hps.data.sampling_rate, audio)
print(f'./{output_dir}/output_{sid}.wav Generated!')
def vcms(inputstr, sid): # multi
fltstr = re.sub(r"[\[\]\(\)\{\}]", "", inputstr)
#fltstr = langdetector(fltstr) #- optional for cjke/cjks type cleaners
stn_tst = get_text(fltstr, hps)
for idx, speaker in enumerate(speakers):
sid = torch.LongTensor([idx]).to(device)
with torch.no_grad():
x_tst = stn_tst.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1 / speed)[0][0,0].data.cpu().float().numpy()
write(f'{output_dir}/{speaker}.wav', hps.data.sampling_rate, audio)
print(f'{output_dir}/{speaker}.wav Generated!')
def ex_voice_conversion(sid_tgt): # dummy - TODO : further work
#import IPython.display as ipd
output_dir = 'ex_output'
dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
collate_fn = TextAudioSpeakerCollate()
loader = DataLoader(dataset, num_workers=0, shuffle=False, batch_size=1, pin_memory=False, drop_last=True, collate_fn=collate_fn)
data_list = list(loader)
# print(data_list)
with torch.no_grad():
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.to(device) for x in data_list[0]]
'''
sid_tgt1 = torch.LongTensor([1]).to(device)
sid_tgt2 = torch.LongTensor([2]).to(device)
sid_tgt3 = torch.LongTensor([4]).to(device)
'''
audio = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][0, 0].data.cpu().float().numpy()
'''
audio1 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0, 0].data.cpu().float().numpy()
audio2 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt2)[0][0, 0].data.cpu().float().numpy()
audio3 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt3)[0][0, 0].data.cpu().float().numpy()
'''
write(f'./{output_dir}/output_{sid_src}-{sid_tgt}.wav', hps.data.sampling_rate, audio)
print(f'./{output_dir}/output_{sid_src}-{sid_tgt}.wav Generated!')
'''
print("Original SID: %d" % sid_src.item())
ipd.display(ipd.Audio(y[0].cpu().numpy(), rate=hps.data.sampling_rate, normalize=False))
print("Converted SID: %d" % sid_tgt1.item())
ipd.display(ipd.Audio(audio1, rate=hps.data.sampling_rate, normalize=False))
print("Converted SID: %d" % sid_tgt2.item())
ipd.display(ipd.Audio(audio2, rate=hps.data.sampling_rate, normalize=False))
print("Converted SID: %d" % sid_tgt3.item())
ipd.display(ipd.Audio(audio3, rate=hps.data.sampling_rate, normalize=False))
'''
vcss(input)