-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminimax.py
50 lines (46 loc) · 1.62 KB
/
minimax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import random
import math
import copy
def minimax(position, depth, alpha=-math.inf, beta=math.inf, parent=None):
if parent is None:
parent = []
if depth == 0 or len(position.childs) == 0: # or game over in position
return [position.staticEvaluation(), position, parent]
if position.maximizingPlayer:
maxEval = -math.inf
maxEvalNode = None
maxParent = None
for child in position.childs:
newParent = []
for p in parent:
newParent.append(p)
# newParent = copy.deepcopy(parent)
newParent.append(position)
eval, evalNode, p = minimax(child, depth - 1, alpha, beta, newParent)
maxEval = max(maxEval, eval)
if maxEval == eval:
maxEvalNode = evalNode
maxParent = p
alpha = max(alpha, eval)
if beta <= alpha:
break
return [maxEval, maxEvalNode, maxParent]
else:
minEval = +math.inf
minEvalNode = None
minParent = None
for child in position.childs:
newParent = []
for p in parent:
newParent.append(p)
# newParent = copy.deepcopy(parent)
newParent.append(position)
eval, evalNode, p = minimax(child, depth - 1, alpha, beta, newParent)
minEval = min(minEval, eval)
if minEval == eval:
minEvalNode = evalNode
minParent = p
beta = min(beta, eval)
if beta <= alpha:
break
return [minEval, minEvalNode, minParent]