-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchatbot.py
1350 lines (1090 loc) · 50.6 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import time
import traceback
import json
import threading
import re
import datetime
import concurrent.futures
import base64
import tempfile
import asyncio
from functools import lru_cache
from defusedxml import ElementTree
import yfinance
import pymupdf
import pymupdf4llm
import httpx
from mattermostdriver_patched import Driver
from bs4 import BeautifulSoup
from youtube_transcript_api import YouTubeTranscriptApi
from yt_dlp import YoutubeDL
from openai import OpenAI, NOT_GIVEN
import tiktoken
import nodriver as uc
from helpers import (
resize_image_data,
yt_is_valid_url,
yt_extract_video_id,
wrapper_function_call,
split_message,
is_valid_url,
sanitize_username,
timed_lru_cache,
remove_background_from_image,
)
from config import * # pylint: disable=W0401 wildcard-import, unused-wildcard-import
logging.basicConfig(level=log_level_root)
logger = logging.getLogger(__name__)
logger.setLevel(log_level)
tools = [
{
"type": "function",
"function": {
"name": "raw_html_to_image",
"description": "Generates an image from raw HTML code. You can also pass a URL which will be screenshotted, but only do that if a screenshot is specifically requested (e.g. the user says screenshot this).",
"parameters": {
"type": "object",
"properties": {
"raw_html_code": {
"type": "string",
"description": "Full valid HTML code to be opened on a browser and taken a screenshot of. Only one parameter is allowed",
},
"url": {
"type": "string",
"description": "Valid URL (with http/https in front) to be opened on a browser and taken a screenshot of. Only one parameter is allowed",
},
},
},
},
},
{
"type": "function",
"function": {
"name": "create_custom_emoji_by_url",
"description": "Creates a custom emoji from an image URL, optionally - at the user's request - removes the background of the image. If no emoji name was given, derive a name from the content of the image or use the context",
"parameters": {
"type": "object",
"properties": {
"image_url": {
"type": "string",
"description": "Full valid URL to an image to be uploaded. Don't make up URLs, only use one URL the user has provided you",
},
"emoji_name": {"type": "string", "description": "The desired emoji name"},
"remove_background": {
"type": "boolean",
"description": "Whether to remove the background from the image.",
"default": False,
},
},
"required": ["image_url", "emoji_name"],
},
},
},
{
"type": "function",
"function": {
"name": "generate_image",
"description": "Generates an image based on a textual prompt",
"parameters": {
"type": "object",
"properties": {"prompt": {"type": "string", "description": "Text prompt for generating the image"}},
"required": ["prompt"],
},
},
},
{
"type": "function",
"function": {
"name": "get_exchange_rates",
"description": "Retrieve the latest exchange rates from the ECB, base currency: EUR",
"parameters": {},
},
},
{
"type": "function",
"function": {
"name": "get_cryptocurrency_data_by_id",
"description": "Fetches cryptocurrency data by ID (ex. ethereum) or symbol (ex. BTC), prices in USD",
"parameters": {
"type": "object",
"properties": {
"crypto_id": {"type": "string", "description": "The identifier or symbol of the cryptocurrency"}
},
"required": ["crypto_id"],
},
},
},
{
"type": "function",
"function": {
"name": "get_cryptocurrency_data_by_market_cap",
"description": "Fetches cryptocurrency data for the top N currencies by market cap, prices in USD",
"parameters": {
"type": "object",
"properties": {
"num_currencies": {
"type": "integer",
"description": "The number of top cryptocurrencies to retrieve. Optional",
"default": 15,
"max": 20,
}
},
},
},
},
{
"type": "function",
"function": {
"name": "get_stock_ticker_data",
"description": "Retrieves information about a specified company from the stock market",
"parameters": {
"type": "object",
"properties": {
"ticker_symbol": {
"type": "string",
"description": "The stock ticker symbol of the company (ex. AAPL)",
}
},
"required": ["ticker_symbol"],
},
},
},
]
# Create a driver instance
driver = Driver(
{
"url": mattermost_url,
"token": mattermost_token,
"login_id": mattermost_username,
"password": mattermost_password,
"mfa_token": mattermost_mfa_token,
"scheme": mattermost_scheme,
"port": mattermost_port,
"basepath": mattermost_basepath,
"verify": MATTERMOST_CERT_VERIFY,
"timeout": mattermost_timeout,
# "websocket_kw_args": {"ping_interval": None},
}
)
# Chatbot account username, automatically fetched
CHATBOT_USERNAME = ""
CHATBOT_USERNAME_AT = ""
# Create an AI client instance
ai_client = OpenAI(api_key=api_key, base_url=ai_api_baseurl)
# Used to count tokens, do not modify unless you know what you are doing
model_encoder = tiktoken.encoding_for_model("gpt-4o")
# Create a thread pool with a fixed number of worker threads
thread_pool = concurrent.futures.ThreadPoolExecutor(max_workers=5)
def get_system_instructions(initial_time):
return system_prompt_unformatted.format(current_time=initial_time, CHATBOT_USERNAME=CHATBOT_USERNAME)
@lru_cache(maxsize=1000)
def get_username_from_user_id(user_id):
try:
user = driver.users.get_user(user_id)
return sanitize_username(user["username"])
except Exception as e:
logger.error(f"Error retrieving username for user ID {user_id}: {str(e)} {traceback.format_exc()}")
return f"Unknown_{user_id}"
def send_typing_indicator_loop(user_id, channel_id, parent_id, stop_event):
"""Send a "typing" indicator to show that work is in progress."""
while not stop_event.is_set():
try:
# If full mode is active and we have a parent_id, also send an indicator to the main channel
# We send this first because I prefer it and there is a slight lag for the second indicator
if typing_indicator_mode_is_full and parent_id:
options = {
"channel_id": channel_id,
}
driver.client.make_request("post", f"/users/{user_id}/typing", options=options)
options = {"channel_id": channel_id, "parent_id": parent_id} # id may be substituted with "me"
driver.client.make_request("post", f"/users/{user_id}/typing", options=options)
time.sleep(1)
except Exception as e:
logger.error(f"Error sending typing indicator: {str(e)} {traceback.format_exc()}")
def handle_typing_indicator(user_id, channel_id, parent_id):
logger.debug("Starting typing indicator")
stop_typing_event = threading.Event()
typing_indicator_thread = threading.Thread(
target=send_typing_indicator_loop,
args=(user_id, channel_id, parent_id, stop_typing_event),
)
typing_indicator_thread.start()
return stop_typing_event, typing_indicator_thread
# maybe use general handle generation function that does typing stuff etc so we can save some code
def handle_html_image_generation(raw_html_code, url, channel_id, root_id):
stop_typing_event = None
typing_indicator_thread = None
try:
logger.info("Starting HTML Image generation")
# Start the typing indicator as this is a new thread
stop_typing_event, typing_indicator_thread = handle_typing_indicator(driver.client.userid, channel_id, root_id)
image_data = uc.loop().run_until_complete(asyncio.wait_for(raw_html_to_image(raw_html_code, url), 30))
file_id = driver.files.upload_file(
channel_id=channel_id,
files={"files": ("image.png", image_data)},
)[
"file_infos"
][0]["id"]
# Send the response back to the Mattermost channel as a reply to the thread or as a new thread
driver.posts.create_post(
{
"channel_id": channel_id,
"message": "_Web preview:_",
"root_id": root_id,
"file_ids": [file_id],
}
)
except Exception as e:
logger.error(f"HTML Image generation error: {str(e)} {traceback.format_exc()}")
driver.posts.create_post(
{"channel_id": channel_id, "message": f"HTML Image generation error occurred: {str(e)}", "root_id": root_id}
)
finally:
logger.debug("Stopping typing indicator")
if stop_typing_event:
stop_typing_event.set()
if typing_indicator_thread:
typing_indicator_thread.join()
def handle_custom_emoji_generation(image_url, emoji_name, remove_background, channel_id, root_id):
stop_typing_event = None
typing_indicator_thread = None
try:
logger.info(f"Starting Custom emoji generation for emoji name {emoji_name} and image URL {image_url}")
# Start the typing indicator as this is a new thread
stop_typing_event, typing_indicator_thread = handle_typing_indicator(driver.client.userid, channel_id, root_id)
if not is_valid_url(image_url):
raise Exception("No local/invalid URL allowed for custom emoji generation")
emoji_name = re.sub(r"[^a-z0-9\-+_]", "", emoji_name.lower())[:64]
if not emoji_name:
raise Exception("Invalid emoji name")
# Refactor the image grab code into one function with the other code that we have
with httpx.Client() as client:
# By doing the redirect itself, we might already allow a local request?
with client.stream("GET", image_url, timeout=4, follow_redirects=True) as response:
response.raise_for_status()
final_url = str(response.url)
if not is_valid_url(final_url):
logger.info(f"Skipping local/invalid URL {final_url} after redirection: {image_url}")
raise Exception("No local/invalid URL allowed for custom emoji generation")
content_type = response.headers.get("content-type", "").lower()
if content_type not in compatible_emoji_image_content_types:
raise Exception(f"Unsupported image content type: {content_type}")
total_size = 0
image_data = b""
for chunk in response.iter_bytes():
image_data += chunk
total_size += len(chunk)
if total_size > max_response_size:
raise Exception("Image size from the website exceeded the maximum limit for the chatbot")
if remove_background:
logger.debug(f"Removing background of image from URL {image_url}")
image_data = remove_background_from_image(image_data)
content_type = "image/png"
image_data = resize_image_data(image_data, mattermost_max_emoji_image_dimensions,
MATTERMOST_MAX_EMOJI_IMAGE_FILE_SIZE, content_type)
try:
driver.emoji.create_custom_emoji(emoji_name, files={"image": image_data})
except Exception as e:
raise Exception(f"Emoji name: {emoji_name}, {str(e)}") from e
# Send the response back to the Mattermost channel as a reply to the thread or as a new thread
driver.posts.create_post(
{
"channel_id": channel_id,
"message": f":{emoji_name}:",
"root_id": root_id,
}
)
except Exception as e:
logger.error(f"Custom emoji generation error: {str(e)} {traceback.format_exc()}")
driver.posts.create_post(
{
"channel_id": channel_id,
"message": f"Custom emoji generation error occurred: {str(e)}",
"root_id": root_id,
}
)
finally:
logger.debug("Stopping typing indicator")
if stop_typing_event:
stop_typing_event.set()
if typing_indicator_thread:
typing_indicator_thread.join()
def handle_image_generation(prompt, is_raw, channel_id, root_id):
stop_typing_event = None
typing_indicator_thread = None
try:
logger.info("Querying Image generation API")
# Start the typing indicator as this is a new thread
stop_typing_event, typing_indicator_thread = handle_typing_indicator(driver.client.userid, channel_id, root_id)
if is_raw:
# Removing a leading '#' and any whitespace following it
prompt = re.sub(r"^#(\s*)", "", prompt)
prompt = f"I NEED to test how the tool works with extremely simple prompts. DO NOT add any detail, just use it AS-IS: {prompt}"
response = ai_client.images.generate(
model="dall-e-3",
prompt=prompt,
size=image_size, # type: ignore
quality=image_quality, # type: ignore
style=image_style, # type: ignore
n=1,
response_format="b64_json",
timeout=timeout,
)
# Extract the base64-encoded image data from the response
image_data = response.data[0].b64_json
revised_prompt = response.data[0].revised_prompt
# Decode the base64-encoded image data, resize and compress if necessary
decoded_image_data = resize_image_data(base64.b64decode(image_data), mattermost_max_image_dimensions, 10,
AI_MODEL_IMAGE_GENERATION_MIME_TYPE)
file_id = driver.files.upload_file(
channel_id=channel_id,
files={"files": ("image.png", decoded_image_data)},
)[
"file_infos"
][0]["id"]
# Send the API response back to the Mattermost channel as a reply to the thread or as a new thread
driver.posts.create_post(
{
"channel_id": channel_id,
"message": f"_{revised_prompt}_",
"root_id": root_id,
"file_ids": [file_id],
}
)
except Exception as e:
logger.error(f"Image generation error: {str(e)} {traceback.format_exc()}")
driver.posts.create_post(
{"channel_id": channel_id, "message": f"Image generation error occurred: {str(e)}", "root_id": root_id}
)
finally:
logger.debug("Stopping typing indicator")
if stop_typing_event:
stop_typing_event.set()
if typing_indicator_thread:
typing_indicator_thread.join()
def process_tool_calls(tool_calls, current_message, channel_id, root_id):
if len(tool_calls) > 15:
raise Exception("Too many function calls in the message, maximum is 15")
tool_messages = []
for call in tool_calls:
if call.function.name == "get_stock_ticker_data":
data = wrapper_function_call(get_stock_ticker_data, call.function.arguments)
func_response = {
"tool_call_id": call.id,
"role": "tool",
"name": call.function.name,
"content": str(data),
}
tool_messages.append(func_response)
elif call.function.name == "get_cryptocurrency_data_by_market_cap":
data = wrapper_function_call(get_cryptocurrency_data_by_market_cap, call.function.arguments)
func_response = {
"tool_call_id": call.id,
"role": "tool",
"name": call.function.name,
"content": str(data),
}
tool_messages.append(func_response)
elif call.function.name == "get_cryptocurrency_data_by_id":
data = wrapper_function_call(get_cryptocurrency_data_by_id, call.function.arguments)
func_response = {
"tool_call_id": call.id,
"role": "tool",
"name": call.function.name,
"content": str(data),
}
tool_messages.append(func_response)
elif call.function.name == "get_exchange_rates":
data = wrapper_function_call(get_exchange_rates, call.function.arguments)
func_response = {
"tool_call_id": call.id,
"role": "tool",
"name": call.function.name,
"content": str(data),
}
tool_messages.append(func_response)
elif call.function.name == "generate_image":
arguments = json.loads(call.function.arguments)
prompt_is_raw = current_message.startswith("#")
image_prompt = arguments["prompt"]
thread_pool.submit(
handle_image_generation,
current_message if prompt_is_raw else image_prompt,
prompt_is_raw,
channel_id,
root_id,
)
elif call.function.name == "create_custom_emoji_by_url":
arguments = json.loads(call.function.arguments)
image_url = arguments["image_url"]
emoji_name = arguments["emoji_name"]
remove_background = arguments.get("remove_background", None)
thread_pool.submit(
handle_custom_emoji_generation,
image_url,
emoji_name,
remove_background,
channel_id,
root_id,
)
elif call.function.name == "raw_html_to_image":
arguments = json.loads(call.function.arguments)
raw_html_code = arguments.get("raw_html_code", None)
url = arguments.get("url", None)
thread_pool.submit(
handle_html_image_generation,
raw_html_code,
url,
channel_id,
root_id,
)
else:
logger.error(f"Hallucinated function call: {call.function.name}")
func_response = {
"tool_call_id": call.id,
"role": "tool",
"name": call.function.name,
"content": "You hallucinated this function call, it does not exist",
}
tool_messages.append(func_response)
return tool_messages
def handle_text_generation(current_message, messages, channel_id, root_id, initial_time):
start_time = time.time()
system_instructions = get_system_instructions(initial_time)
# Send the messages to the AI API
response = ai_client.chat.completions.create(
model=model,
max_tokens=max_tokens,
messages=[{"role": "developer", "content": system_instructions}, *messages],
timeout=timeout,
temperature=temperature,
tools=tools if tool_use_enabled else NOT_GIVEN,
tool_choice="auto" if tool_use_enabled else NOT_GIVEN, # Let model decide to call the function or not
)
end_time = time.time()
duration = end_time - start_time
logger.debug(f"AI API response received after {duration:.2f} seconds")
initial_message_response = response.choices[0].message
prompt_tokens = response.usage.prompt_tokens
cached_prompt_tokens = response.usage.prompt_tokens_details.cached_tokens
completion_tokens = response.usage.completion_tokens
# Check if tool calls are present in the response
if initial_message_response.tool_calls:
logger.debug("Handling tool calls")
tool_calls = initial_message_response.tool_calls
tool_messages = process_tool_calls(tool_calls, current_message, channel_id, root_id)
# If all tool calls were image generation, we do not need to continue here. Refactor this sometime
image_gen_calls_only = all(
call.function.name in ("generate_image", "raw_html_to_image", "create_custom_emoji_by_url")
for call in tool_calls
)
if image_gen_calls_only:
logger.debug("All tool calls were image generation, skipping text generation")
return
# Remove all image generation tool calls from the message for API compliance, as we handle images differently
initial_message_response.tool_calls = [
call
for call in tool_calls
if call.function.name not in ("generate_image", "raw_html_to_image", "create_custom_emoji_by_url")
]
# Requery in case there are new messages from function calls
if tool_messages:
logger.debug("Requerying AI API after tool calls")
# Add the initial response to the messages array as it contains infos about tool calls
messages.append(initial_message_response)
messages.extend(tool_messages)
response = ai_client.chat.completions.create(
model=model,
max_tokens=max_tokens,
messages=[{"role": "system", "content": system_instructions}, *messages],
timeout=timeout,
temperature=temperature,
tools=tools,
tool_choice="none",
)
prompt_tokens += response.usage.prompt_tokens
cached_prompt_tokens = response.usage.prompt_tokens_details.cached_tokens
completion_tokens += response.usage.completion_tokens
response_text = response.choices[0].message.content
if response_text is None:
raise Exception("Empty AI response, likely API error or mishandling")
if response.choices[0].finish_reason == "content_filter":
logger.debug("Response censored, finish reason: content_filter")
response_text += "\n**Response censored, finish reason: content_filter**"
# Split the response into multiple messages if necessary
response_parts = split_message(response_text)
# Send each part of the response as a separate message
for part in response_parts:
# Send the API response back to the Mattermost channel as a reply to the thread or as a new thread
driver.posts.create_post({"channel_id": channel_id, "message": part, "root_id": root_id})
prompt_tokens_cost = 2.5 / 1_000_000 * prompt_tokens - 1.25 * cached_prompt_tokens
completion_tokens_cost = 10 / 1_000_000 * completion_tokens
tokens_cost_total = prompt_tokens_cost + completion_tokens_cost
logger.debug(
f"Text Token cost: ${tokens_cost_total:.4f} | Input ${prompt_tokens_cost:.4f} ({prompt_tokens}, cached: {cached_prompt_tokens}) + Output ${completion_tokens_cost:.4f} ({completion_tokens})"
)
def handle_generation(current_message, messages, channel_id, root_id, initial_time):
try:
logger.info("Querying AI API")
handle_text_generation(current_message, messages, channel_id, root_id, initial_time)
except Exception as e:
logger.error(f"Text generation error: {str(e)} {traceback.format_exc()}")
driver.posts.create_post(
{"channel_id": channel_id, "message": f"Text generation error occurred: {str(e)}", "root_id": root_id}
)
@timed_lru_cache(seconds=300, maxsize=100)
def get_stock_ticker_data(arguments):
arguments = json.loads(arguments)
ticker_symbol = arguments["ticker_symbol"]
stock = yfinance.Ticker(ticker_symbol)
stock_data = {
"info": str(stock.info),
"calendar": str(stock.calendar),
"news": str(stock.news),
"dividends": str(stock.dividends),
"splits": str(stock.splits),
"quarterly_financials": str(stock.quarterly_financials),
"financials": str(stock.financials),
"cashflow": str(stock.cashflow),
}
return stock_data
async def raw_html_to_image(raw_html, url):
browser = await uc.start(
browser_executable_path=browser_executable_path, headless=True, browser_args=["--window-size=1920,1080"]
)
try:
final_url = None
if raw_html:
encoded_html = base64.b64encode(raw_html.encode("utf-8")).decode("utf-8")
final_url = f"data:text/html;base64,{encoded_html}"
elif url:
if not is_valid_url(url):
raise Exception(f"Local/invalid URLs are not allowed for screenshotting {url}")
final_url = url
if not final_url:
raise Exception("No URL or raw HTML provided")
page = await browser.get(final_url)
await page # wait for events to be processed
await browser.wait(3) # wait some time for more elements
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
temp_screen_path = temp_file.name
try:
await page.save_screenshot(filename=temp_screen_path, format="png", full_page=True)
await page.close()
with open(temp_screen_path, "rb") as file:
file_bytes = file.read()
finally:
os.remove(temp_screen_path)
finally:
browser.stop() # uc.util.deconstruct_browser() but may affect other instances running at the same time?
return resize_image_data(file_bytes, mattermost_max_image_dimensions, 10, "image/png")
@timed_lru_cache(seconds=7200, maxsize=100)
def get_exchange_rates(_arguments):
ecb_url = "https://www.ecb.europa.eu/stats/eurofxref/eurofxref-daily.xml"
with httpx.Client() as client:
response = client.get(ecb_url, timeout=4)
response.raise_for_status()
root = ElementTree.fromstring(response.content)
namespace = {
"gesmes": "http://www.gesmes.org/xml/2002-08-01",
"ecb": "http://www.ecb.int/vocabulary/2002-08-01/eurofxref",
}
rates = root.find(".//ecb:Cube/ecb:Cube", namespaces=namespace)
exchange_rates = {"base_currency": "EUR"}
for rate in rates.findall("ecb:Cube", namespaces=namespace):
exchange_rates[rate.get("currency")] = rate.get("rate")
return exchange_rates
@timed_lru_cache(seconds=180, maxsize=100)
def get_cryptocurrency_data_by_market_cap(arguments):
arguments = json.loads(arguments)
num_currencies = arguments.get("num_currencies", 15)
num_currencies = min(num_currencies, 20) # Limit to 20
url = "https://api.coingecko.com/api/v3/coins/markets" # possible alternatives: coincap.io, mobula.io
params = {
"vs_currency": "usd",
"order": "market_cap_desc",
"per_page": num_currencies,
"page": 1,
"sparkline": "false",
"price_change_percentage": "24h,7d",
}
with httpx.Client() as client:
response = client.get(url, timeout=15, params=params)
response.raise_for_status()
data = response.json()
return data
@timed_lru_cache(seconds=180, maxsize=100)
def get_cryptocurrency_data_by_id(arguments):
arguments = json.loads(arguments)
crypto_id = arguments["crypto_id"].lower()
url = "https://api.coingecko.com/api/v3/coins/markets"
params = {
"vs_currency": "usd",
"order": "market_cap_desc",
"per_page": 500,
"page": 1,
"sparkline": "false",
"price_change_percentage": "24h,7d",
}
with httpx.Client() as client:
response = client.get(url, timeout=15, params=params)
response.raise_for_status()
data = response.json()
# Filter data to find the cryptocurrency with the matching id or symbol
matched_crypto = next((item for item in data if crypto_id in (item["id"], item["symbol"])), None)
if matched_crypto:
return matched_crypto
return "No data found for the specified cryptocurrency ID/symbol"
def process_message(event_data):
post = json.loads(event_data["data"]["post"])
if should_ignore_post(post):
return
current_message, channel_id, sender_name, root_id, post_id, channel_display_name = extract_post_data(
post, event_data
)
stop_typing_event = None
typing_indicator_thread = None
chatbot_invoked = False
try:
messages = []
# Chatbot is invoked if it was mentioned, the chatbot has already been invoked in the thread or its a DM
chatbot_invoked = is_chatbot_invoked(post, post_id, root_id, channel_display_name)
if chatbot_invoked:
# Start the typing indicator
stop_typing_event, typing_indicator_thread = handle_typing_indicator(
driver.client.userid, channel_id, root_id
)
# Retrieve the thread context if there is any
thread_messages = []
if root_id:
thread_messages = get_thread_posts(root_id, post_id)
root_post = driver.posts.get_post(root_id)
posted_at = root_post["create_at"]
else:
# If we don't have any thread, add our own message to the array
thread_messages.append((post, sender_name, "user", current_message))
posted_at = post["create_at"]
current_time_utc = datetime.datetime.now(datetime.UTC)
post_time_utc = datetime.datetime.fromtimestamp(posted_at / 1000.0, tz=datetime.UTC)
initial_time = min(current_time_utc, post_time_utc).strftime("%Y-%m-%d %H:%M:%S.%f")[
:-3] # Gets the UTC time of the root post
for index, thread_message in enumerate(thread_messages):
content = {}
thread_post, thread_sender_name, thread_role, thread_message_text = thread_message
image_messages = []
links = re.findall(r"(https?://\S+)", thread_message_text, re.IGNORECASE) # Allow http and https links
content["website_data"] = []
# We don't want to grab URL content from links the assistant sent
# If keep URL content is disabled, we will skip the URL content code unless its the last message
is_last_message = index == len(thread_messages) - 1
if thread_role == "user" and keep_all_url_content or is_last_message:
for link in links:
website_data = {
"url": link,
}
try:
if not is_valid_url(link):
raise Exception("Local or invalid link")
website_data["url_content"], link_image_messages = request_link_content(link)
image_messages.extend(link_image_messages)
except Exception as e:
logger.error(
f"Error extracting content from link {link}: {str(e)} {traceback.format_exc()}"
)
website_data["error"] = (
f"fetching website caused an exception, warn the chatbot user: {str(e)}"
)
finally:
content["website_data"].append(website_data)
files_text_content, files_image_messages = get_files_content(thread_post)
image_messages.extend(files_image_messages)
if files_text_content:
content["file_data"] = files_text_content
if not content["website_data"]:
del content["website_data"]
# We use str() and not JSON.dumps() to avoid the AI replying in (partially) escaped JSON format
content = f"{str(content)}{thread_message_text}" if content else thread_message_text
if image_messages:
image_messages.append({"type": "text", "text": content})
# We force a user role here, as this is an API requirement for images for GPT-4o
messages.append({"role": "user", "content": image_messages}) # "name": thread_sender_name in front
else:
messages.append(construct_text_message(thread_sender_name, thread_role, content))
# If the message is not part of a thread, reply to it to create a new thread
handle_generation(current_message, messages, channel_id, post_id if not root_id else root_id, initial_time)
except Exception as e:
logger.error(f"Error processing message: {str(e)} {traceback.format_exc()}")
if chatbot_invoked:
driver.posts.create_post(
{"channel_id": channel_id, "message": f"Process message error occurred: {str(e)}", "root_id": root_id}
)
finally:
logger.debug("Clearing cache and stopping typing indicator")
get_raw_thread_posts.cache_clear() # We clear this cache as it won't be useful for the next message with the current implementation
if stop_typing_event:
stop_typing_event.set()
if typing_indicator_thread:
typing_indicator_thread.join()
def should_ignore_post(post):
sender_id = post["user_id"]
# Ignore own posts
if sender_id == driver.client.userid:
return True
if sender_id in mattermost_ignore_sender_id:
logger.debug("Ignoring post from an ignored sender ID")
return True
if post.get("props", {}).get("from_bot") == "true":
logger.debug("Ignoring post from a bot")
return True
return False
def extract_post_data(post, event_data):
# Remove the "@chatbot" mention from the message
message = post["message"].replace(CHATBOT_USERNAME_AT, "").strip()
channel_id = post["channel_id"]
sender_name = sanitize_username(event_data["data"]["sender_name"])
root_id = post["root_id"]
post_id = post["id"]
channel_display_name = event_data["data"]["channel_display_name"]
return message, channel_id, sender_name, root_id, post_id, channel_display_name
def construct_text_message(name, role, message):
return {
# "name": name,
"role": role,
"content": [
{
"type": "text",
"text": str(message),
}
],
}
def construct_image_content_message(content_type, image_data_base64):
return {
"type": "image_url",
"image_url": {"url": f"data:{content_type};base64,{image_data_base64}"},
}
# We pass post_id here so cache contains results for the most recent message
@lru_cache(maxsize=100)
def get_raw_thread_posts(root_id, _post_id):
return driver.posts.get_thread(root_id)
def get_thread_posts(root_id, post_id):
messages = []
thread = get_raw_thread_posts(root_id, post_id)
# Sort the thread posts based on their create_at timestamp as the "order" prop is not suitable for this
sorted_posts = sorted(thread["posts"].values(), key=lambda x: x["create_at"])
for thread_post in sorted_posts:
thread_sender_name = get_username_from_user_id(thread_post["user_id"])
thread_message = thread_post["message"].replace(CHATBOT_USERNAME_AT, "").strip()
role = "assistant" if thread_post["user_id"] == driver.client.userid else "user"
messages.append((thread_post, thread_sender_name, role, thread_message))
if thread_post["id"] == post_id:
break # To prevent it answering a different newer post that we might have occurred during our processing
return messages
def is_chatbot_invoked(post, post_id, root_id, channel_display_name):
# We directly access the raw message here as we filter the mention earlier
last_message = post["message"]
if CHATBOT_USERNAME_AT in last_message:
return True
# It is a direct message
if channel_display_name.startswith("@"):
return True
if root_id:
thread = get_raw_thread_posts(root_id, post_id)
# Check if the last post in the thread starts with a mention of ANY other bot than the chatbot
# If so, ignore it, as it is likely a mention for another bot
if thread:
match = re.match(r"@(\w+)", last_message)
if match:
mentioned_username = match.group(1)
try:
mentioned_user = driver.users.get_user_by_username(mentioned_username)
mentioned_user_id = mentioned_user["id"]
if mentioned_user_id != driver.client.userid and mentioned_user.get("is_bot", False):
logger.debug(
"Ignoring post and not checking further if we have been invoked as it is a mention for another bot"
)
return False
except Exception as e:
logger.debug(f"Could not get user {mentioned_username}: {str(e)}")
# Check if we have been mentioned in the past or if the chatbot had already replied
for thread_post in thread["posts"].values():
if thread_post["user_id"] == driver.client.userid:
return True
# Needed when you mention the chatbot and send a fast message afterward
if CHATBOT_USERNAME_AT in thread_post["message"]:
return True
return False
@lru_cache(maxsize=100)
def get_file_content(file_details_json):
file_details = json.loads(file_details_json)
file_id = file_details["id"]
file_size = file_details["size"]