-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDE1_TOP.v
1102 lines (849 loc) · 30.9 KB
/
DE1_TOP.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
module DE1_TOP
(
//////////////////////// Clock Input ////////////////////////
input [1:0] CLOCK_24, // 24 MHz
input [1:0] CLOCK_27, // 27 MHz
input CLOCK_50, // 50 MHz
input EXT_CLOCK, // External Clock
//////////////////////// Push Button ////////////////////////
input [3:0] KEY, // Pushbutton[3:0]
//////////////////////// DPDT Switch ////////////////////////
input [9:0] SW, // Toggle Switch[9:0]
//////////////////////// 7-SEG Display ////////////////////////
output [6:0] HEX0, // Seven Segment Digit 0
output [6:0] HEX1, // Seven Segment Digit 1
output [6:0] HEX2, // Seven Segment Digit 2
output [6:0] HEX3, // Seven Segment Digit 3
//////////////////////////// LED ////////////////////////////
output [7:0] LEDG, // LED Green[7:0]
output [9:0] LEDR, // LED Red[9:0]
//////////////////////////// UART ////////////////////////////
output UART_TXD, // UART Transmitter
input UART_RXD, // UART Receiver
/////////////////////// SDRAM Interface ////////////////////////
inout [15:0] DRAM_DQ, // SDRAM Data bus 16 Bits
output [11:0] DRAM_ADDR, // SDRAM Address bus 12 Bits
output DRAM_LDQM, // SDRAM Low-byte Data Mask
output DRAM_UDQM, // SDRAM High-byte Data Mask
output DRAM_WE_N, // SDRAM Write Enable
output DRAM_CAS_N, // SDRAM Column Address Strobe
output DRAM_RAS_N, // SDRAM Row Address Strobe
output DRAM_CS_N, // SDRAM Chip Select
output DRAM_BA_0, // SDRAM Bank Address 0
output DRAM_BA_1, // SDRAM Bank Address 0
output DRAM_CLK, // SDRAM Clock
output DRAM_CKE, // SDRAM Clock Enable
//////////////////////// Flash Interface ////////////////////////
inout [7:0] FL_DQ, // FLASH Data bus 8 Bits
output [21:0] FL_ADDR, // FLASH Address bus 22 Bits
output FL_WE_N, // FLASH Write Enable
output FL_RST_N, // FLASH Reset
output FL_OE_N, // FLASH Output Enable
output FL_CE_N, // FLASH Chip Enable
//////////////////////// SRAM Interface ////////////////////////
inout [15:0] SRAM_DQ, // SRAM Data bus 16 Bits
output [17:0] SRAM_ADDR, // SRAM Address bus 18 Bits
output SRAM_UB_N, // SRAM High-byte Data Mask
output SRAM_LB_N, // SRAM Low-byte Data Mask
output SRAM_WE_N, // SRAM Write Enable
output SRAM_CE_N, // SRAM Chip Enable
output SRAM_OE_N, // SRAM Output Enable
//////////////////// SD Card Interface ////////////////////////
inout SD_DAT, // SD Card Data
inout SD_DAT3, // SD Card Data 3
inout SD_CMD, // SD Card Command Signal
output SD_CLK, // SD Card Clock
//////////////////////// I2C ////////////////////////////////
inout I2C_SDAT, // I2C Data
output I2C_SCLK, // I2C Clock
//////////////////////// PS2 ////////////////////////////////
input PS2_DAT, // PS2 Data
input PS2_CLK, // PS2 Clock
//////////////////// USB JTAG link ////////////////////////////
input TDI, // CPLD -> FPGA (data in)
input TCK, // CPLD -> FPGA (clk)
input TCS, // CPLD -> FPGA (CS)
output TDO, // FPGA -> CPLD (data out)
//////////////////////// VGA ////////////////////////////
output VGA_HS, // VGA H_SYNC
output VGA_VS, // VGA V_SYNC
output [3:0] VGA_R, // VGA Red[3:0]
output [3:0] VGA_G, // VGA Green[3:0]
output [3:0] VGA_B, // VGA Blue[3:0]
//////////////////// Audio CODEC ////////////////////////////
inout AUD_ADCLRCK, // Audio CODEC ADC LR Clock
input AUD_ADCDAT, // Audio CODEC ADC Data
inout AUD_DACLRCK, // Audio CODEC DAC LR Clock
output AUD_DACDAT, // Audio CODEC DAC Data
inout AUD_BCLK, // Audio CODEC Bit-Stream Clock
output AUD_XCK, // Audio CODEC Chip Clock
//////////////////////// GPIO ////////////////////////////////
inout [35:0] GPIO_0, // GPIO Connection 0
inout [35:0] GPIO_1 // GPIO Connection 1
);
rom rom_inst (
.clock ( CLK_DIV[0] ),
.address ( CPU_ADDR[11:0] ),
.q ( ROM_DATA )
);
wire [7:0] ROM_DATA/*synthesis keep*/;
internal_ram internal_ram_inst (
.clock ( SYS_CLK ),
.address ( CPU_ADDR[6:0] ),
.data ( CPU_DATA_OUT ),
.wren ( INT_RAM_CS && !CPU_RW ),
.q ( INT_RAM_DATA )
);
wire [7:0] INT_RAM_DATA;
ram ram_inst (
.clock ( SYS_CLK ),
.address ( CPU_ADDR[10:0] ),
.data ( CPU_DATA_OUT ),
.wren ( RAM_CS && !CPU_RW ),
.q ( RAM_DATA )
);
wire [7:0] RAM_DATA/*synthesis keep*/;
wire IO_CS = (CPU_ADDR>=16'h0000 && CPU_ADDR<=16'h001F)/*synthesis keep*/; // "IO" here, meaning all of the internal CPU regs.
wire GA_CS = (CPU_ADDR>=16'h0020 && CPU_ADDR<=16'h003F)/*synthesis keep*/;
wire INT_RAM_CS = (CPU_ADDR>=16'h0080 && CPU_ADDR<=16'h00FF)/*synthesis keep*/; // Made the internal RAM separate now, since I'm confident that the external is mapped higher up.
wire RAM_CS = (CPU_ADDR>=16'h0800 && CPU_ADDR<=16'h0FFF)/*synthesis keep*/; // Pretty sure the external SRAM is mapped from 0x800 to 0xFFF,
// since the start of code clears the range from 0x800 to 0x690.
wire ROM_CS = (CPU_ADDR>=16'hF000 && CPU_ADDR<=16'hFFFF)/*synthesis keep*/; // The Roland ROM is only 4KB, and the reset vector jumps to 0xF000 as well.
assign GPIO_0[35] = IO_CS;
wire [7:0] MPU_DATA = 8'h00;
//wire [7:0] MPU_CMD = {1'b0, !KEY[3], 6'b000000};
wire [7:0] MPU_CMD = 8'h85;
//wire [7:0] GA_CONT = 8'h00;
//wire [7:0] GA_MUX = (CPU_ADDR==16'h0020) ? MPU_DATA :
// (CPU_ADDR==16'h0021) ? MPU_CMD :
// (CPU_ADDR==16'h0030) ? GA_CONT : 8'h00;
wire CPU_RW/*synthesis keep*/;
wire CPU_VMA/*synthesis keep*/;
wire [15:0] CPU_ADDR/*synthesis keep*/;
wire [7:0] CPU_DATA_IN = (IO1_DIR_CS) ? IO1_DIR :
(IO2_DIR_CS) ? IO2_DIR :
//(IO1_DATA_CS) ? IO1_PORT :
(IO1_DATA_CS) ? 8'h80 : // TESTING !! The MIDI / serial int routine seems to check the MSB of Port 1
// to determine whether it should re-transmit the incoming MIDI data? OzOnE.
(IO2_DATA_CS) ? IO2_PORT :
(IO3_DIR_CS) ? IO3_DIR :
(IO4_DIR_CS) ? IO4_DIR :
(IO3_DATA_CS) ? IO3_PORT :
(IO4_DATA_CS) ? IO4_PORT :
(CTR_HIGH_CS) ? CTR_REG[15:8] :
(CTR_LOW_CS) ? CTR_REG[7:0] :
(SCI_INT && CPU_ADDR==16'hFFF8) ? 8'hFC : // Kludge, to point the normal IRQ vector at the SCI (MIDI IN / OUT) routine.
(SCI_INT && CPU_ADDR==16'hFFF9) ? 8'h7C :
(TMR_INT && CPU_ADDR==16'hFFF8) ? 8'hFF : // Kludge, to point the normal IRQ vector at the Timer Overflow interrupt routine.
(TMR_INT && CPU_ADDR==16'hFFF9) ? 8'hE0 :
(OCC_INT && CPU_ADDR==16'hFFF8) ? 8'hFE : // Kludge, to point the normal IRQ vector at the OCC (Output Capture / Compare) routine.
(OCC_INT && CPU_ADDR==16'hFFF9) ? 8'hA2 :
(ICC_INT && CPU_ADDR==16'hFFF8) ? 8'hFE : // Kludge, to point the normal IRQ vector at the ICC (Input Capture / Compare) routine.
(ICC_INT && CPU_ADDR==16'hFFF9) ? 8'h75 :
(TX_RX_CS) ? 8'h80 :
(RXDATA_CS) ? RXD_DATA :
//(GA_CS) ? GA_MUX :
(CPU_ADDR==16'h0020) ? MPU_DATA :
(CPU_ADDR==16'h0021) ? MPU_CMD :
(INT_RAM_CS) ? INT_RAM_DATA :
(RAM_CS) ? RAM_DATA :
(ROM_CS) ? ROM_DATA : 8'h00/*synthesis keep*/;
wire [7:0] CPU_DATA_OUT/*synthesis keep*/;
cpu68 cpu68_inst
(
.clk( SYS_CLK ) , // input clk
.rst( !KEY[0] ) , // input rst (active HIGH!!!!!!!!!!!!!!!!!!)
.rw( CPU_RW ) , // output rw
.vma( CPU_VMA ) , // output vma
.address( CPU_ADDR ) , // output [15:0] address
.data_in( CPU_DATA_IN ) , // input [7:0] data_in
.data_out( CPU_DATA_OUT ) ,// output [7:0] data_out
.hold( 1'b0 ) ,// input hold
.halt( 1'b0 ) ,// input halt
// Roland MPU-401 does NOT use the /IRQ or /NMI pins!
// (the ROM vectors for those just point to 0xF000 again.)
//
// The extra four vectors for the ICF, OCF, TOF, and SCI need to be implemented on
// this CPU core before we can handle everything that the Hitachi HD6801 does! OzOnE.
//
.irq( SCI_INT | TMR_INT | OCC_INT | ICC_INT) , // input irq
.nmi( 1'b0 ) // input nmi
);
wire IO1_DIR_CS = (CPU_ADDR==16'h0000)/*synthesis keep*/;
wire IO2_DIR_CS = (CPU_ADDR==16'h0001)/*synthesis keep*/;
wire IO1_DATA_CS = (CPU_ADDR==16'h0002)/*synthesis keep*/;
wire IO2_DATA_CS = (CPU_ADDR==16'h0003)/*synthesis keep*/;
wire IO3_DIR_CS = (CPU_ADDR==16'h0004)/*synthesis keep*/;
wire IO4_DIR_CS = (CPU_ADDR==16'h0005)/*synthesis keep*/;
wire IO3_DATA_CS = (CPU_ADDR==16'h0006)/*synthesis keep*/;
wire IO4_DATA_CS = (CPU_ADDR==16'h0007)/*synthesis keep*/;
wire TIMER_CS = (CPU_ADDR==16'h0008)/*synthesis keep*/; // TCSR (Timer Control and Status Register).
wire CTR_HIGH_CS = (CPU_ADDR==16'h0009)/*synthesis keep*/;
wire CTR_LOW_CS = (CPU_ADDR==16'h000A)/*synthesis keep*/;
wire OCC_HIGH_CS = (CPU_ADDR==16'h000B)/*synthesis keep*/;
wire OCC_LOW_CS = (CPU_ADDR==16'h000C)/*synthesis keep*/;
wire ICC_HIGH_CS = (CPU_ADDR==16'h000D)/*synthesis keep*/;
wire ICC_LOW_CS = (CPU_ADDR==16'h000E)/*synthesis keep*/;
wire P3_CONT_CS = (CPU_ADDR==16'h000F)/*synthesis keep*/;
wire RATE_CS = (CPU_ADDR==16'h0010)/*synthesis keep*/;
wire TX_RX_CS = (CPU_ADDR==16'h0011)/*synthesis keep*/;
wire RXDATA_CS = (CPU_ADDR==16'h0012)/*synthesis keep*/;
wire TXDATA_CS = (CPU_ADDR==16'h0013)/*synthesis keep*/;
wire RAM_CONT_CS = (CPU_ADDR==16'h0014)/*synthesis keep*/;
assign LEDR = {IO1_PORT[1:0], IO2_PORT};
assign LEDG = IO3_PORT;
SEG7_LUT_4 SEG7_LUT_4_inst
(
.oSEG0( HEX0 ) , // output [6:0] oSEG0
.oSEG1( HEX1 ) , // output [6:0] oSEG1
.oSEG2( HEX2 ) , // output [6:0] oSEG2
.oSEG3( HEX3 ) , // output [6:0] oSEG3
.iDIG( CPU_ADDR ) // input [15:0] iDIG
);
reg [7:0] IO1_DIR;
reg [7:0] IO2_DIR;
reg [7:0] IO1_PORT;
reg [7:0] IO2_PORT;
reg [7:0] IO3_DIR;
reg [7:0] IO4_DIR;
reg [7:0] IO3_PORT;
reg [7:0] IO4_PORT;
reg [7:0] TIMER_CONT_REG;
reg [15:0] CTR_REG;
reg [15:0] OCC_REG;
reg [15:0] ICC_REG;
reg [7:0] P3_CONT_REG;
reg [7:0] RATE_REG;
reg [7:0] TX_RX_REG;
reg [7:0] RXDATA_REG;
reg [7:0] TXDATA_REG;
reg [7:0] RAM_CONT_REG;
wire MIDI_IN = GPIO_1[0];
async_receiver async_receiver_inst
(
.clk( SYS_CLK ) , // input clk
.RxD( MIDI_IN ) , // input RxD
.RxD_data_ready( RXD_DATA_READY ) , // output RxD_data_ready
.RxD_data( RXD_DATA ) , // output [7:0] RxD_data
.RxD_endofpacket( RXD_EOF ) , // output RxD_endofpacket
.RxD_idle( RXD_IDLE ) // output RxD_idle
);
wire [7:0] RXD_DATA;
wire RXD_DATA_READY;
wire RXD_EOF;
wire RXD_IDLE;
reg SCI_INT/*synthesis keep*/;
reg ICC_INT/*synthesis keep*/;
reg TMR_INT/*synthesis keep*/;
reg OCC_INT/*synthesis keep*/;
reg [1:0] TIMER_DIV;
always @(posedge SYS_CLK or negedge KEY[0])
if (!KEY[0]) begin
IO1_DIR <= 8'h00;
IO1_PORT <= 8'h00;
IO2_DIR <= 8'h00;
IO2_PORT <= 8'h00;
IO3_DIR <= 8'h00;
IO3_PORT <= 8'h00;
IO4_DIR <= 8'h00;
IO4_PORT <= 8'h00;
TIMER_CONT_REG <= 8'h00; // Offset 0x8.
CTR_REG <= 16'h0000; // (16-bit). Offsets 0x9 to 0xA.
OCC_REG <= 16'h0000; // (16-bit). Offsets 0xB to 0xC.
ICC_REG <= 16'h0000; // (16-bit). Offsets 0xD to 0xE.
P3_CONT_REG <= 8'h00;
RATE_REG <= 8'h00;
TX_RX_REG <= 8'h00;
// RXDATA_REG <= 8'h00;
TXDATA_REG <= 8'h00;
RAM_CONT_REG <= 8'h00;
SCI_INT <= 1'b0;
ICC_INT <= 1'b0;
OCC_INT <= 1'b0;
TMR_INT <= 1'b0;
TIMER_DIV <= 4'h0;
end
else begin
TIMER_DIV <= TIMER_DIV + 1;
if (TIMER_DIV==4'h0000) CTR_REG <= CTR_REG + 1;
if (CPU_ADDR==16'h0000 && !CPU_RW) IO1_DIR <= CPU_DATA_OUT; // Bits are 1=Output, 0=Input.
if (CPU_ADDR==16'h0002 && !CPU_RW) IO1_PORT <= CPU_DATA_OUT;
if (CPU_ADDR==16'h0001 && !CPU_RW) IO2_DIR <= CPU_DATA_OUT;
//if (CPU_ADDR==16'h0003 && !CPU_RW) IO2_PORT <= {CPU_DATA_OUT[7:4], MIDI_IN, CPU_DATA_OUT[2:0]}; // Passing the MIDI data directly to RXDATA reg. This wouldn't have worked anyway.
if (CPU_ADDR==16'h0003 && !CPU_RW) IO2_PORT <= CPU_DATA_OUT;
if (CPU_ADDR==16'h0004 && !CPU_RW) IO3_DIR <= CPU_DATA_OUT;
if (CPU_ADDR==16'h0006 && !CPU_RW) IO3_PORT <= CPU_DATA_OUT;
if (CPU_ADDR==16'h0005 && !CPU_RW) IO4_DIR <= CPU_DATA_OUT;
if (CPU_ADDR==16'h0007 && !CPU_RW) IO4_PORT <= CPU_DATA_OUT;
if (TIMER_CS && !CPU_RW) TIMER_CONT_REG <= CPU_DATA_OUT;
if (CTR_HIGH_CS && !CPU_RW) CTR_REG[15:8] <= CPU_DATA_OUT;
if (CTR_LOW_CS && !CPU_RW) CTR_REG[7:0] <= CPU_DATA_OUT;
if (OCC_HIGH_CS && !CPU_RW) OCC_REG[15:8] <= CPU_DATA_OUT;
if (OCC_LOW_CS && !CPU_RW) OCC_REG[7:0] <= CPU_DATA_OUT;
if (ICC_HIGH_CS && !CPU_RW) ICC_REG[15:8] <= CPU_DATA_OUT;
if (ICC_LOW_CS && !CPU_RW) ICC_REG[7:0] <= CPU_DATA_OUT;
if (P3_CONT_CS && !CPU_RW) P3_CONT_REG <= CPU_DATA_OUT;
if (RATE_CS && !CPU_RW) RATE_REG <= CPU_DATA_OUT;
if (TX_RX_CS && !CPU_RW) TX_RX_REG <= CPU_DATA_OUT;
// if (RXDATA_CS && !CPU_RW) RXDATA_REG <= CPU_DATA_OUT;
if (TXDATA_CS && !CPU_RW) TXDATA_REG <= CPU_DATA_OUT;
if (RAM_CONT_CS && !CPU_RW) RAM_CONT_REG <= CPU_DATA_OUT;
if (RXD_DATA_READY) SCI_INT <= 1'b1; // New MIDI byte received. Trigger an interrupt!
if (CPU_ADDR==16'hFC7C) SCI_INT <= 1'b0; // MIDI (SCI) interrupt routine has been triggered, clear the interrupt!
if (CTR_REG ==16'hFFFF) TMR_INT <= 1'b1;
if (CPU_ADDR==16'hFFE3) TMR_INT <= 1'b0;
if (!KEY[2]) OCC_INT <= 1'b1;
if (CPU_ADDR==16'hFEA4) OCC_INT <= 1'b0;
if (!KEY[1]) ICC_INT <= 1'b1;
if (CPU_ADDR==16'hFE77) ICC_INT <= 1'b0;
end
/*
assign SRAM_ADDR = {2'b00, CPU_ADDR[11:0]};
assign SRAM_UB_N = !(RAM_CS && !CPU_RW);
assign SRAM_LB_N = !(RAM_CS && !CPU_RW);
assign SRAM_CE_N = 1'b0;
assign SRAM_OE_N = !(RAM_CS && CPU_RW);
assign SRAM_WE_N = !(RAM_CS && !CPU_RW);
assign SRAM_DQ = (!CPU_RW) ? {CPU_DATA_OUT, CPU_DATA_OUT} : 16'hzzzz;
*/
//reg [31:0] FL_DATA_TEMP;
//reg [31:0] SRAM_DATA_MUX;
wire TXD_START = TXDATA_CS && !CPU_RW/*synthesis keep*/;
async_transmitter async_transmitter_inst
(
.clk( SYS_CLK ) , // input clk
.TxD_start( TXD_START ) , // input TxD_start
.TxD_data( CPU_DATA_OUT ) , // input [7:0] TxD_data
.TxD( UART_TXD ) , // output TxD
.TxD_busy( TXD_BUSY ) // output TxD_busy
);
wire TXD_BUSY;
reg force_mem_stall;
reg [7:0] debug_state;
reg [7:0] run_count;
reg [15:0] pc_backup;
always @(posedge SYS_CLK or negedge KEY[0])
if (!KEY[0]) begin
debug_state <= 0;
pc_backup <= 32'h12345678;
force_mem_stall <= 1'b1;
end
else begin
case (debug_state)
0: begin
if (SW[0]) begin
force_mem_stall <= 1'b0; // RUN switch HIGH (active). Let CPU run.
if (SW[9] && BP_MATCHED) begin // Nice breakpoint (using the OSD, and PS/2 keyboard).
force_mem_stall <= 1'b1;
debug_state <= 7;
end
else begin
if (SW[8]) debug_state <= 8;
// if (TXD_BUSY) force_mem_stall <= 1'b1;
// else force_mem_stall <= 1'b0;
end
end
else begin // RUN switch LOW (inactive!)...
force_mem_stall <= 1'b1;
if (!KEY[3]) begin
debug_state <= 1; // KEY[3] pressed (active-low)...
end
if (!KEY[2]) begin
run_count <= 8'd64;
debug_state <= 4; // KEY[2] pressed (active-low)...
end
end
end
8: begin
force_mem_stall <= 1'b1;
debug_state <= 0;
end
// Single-cycle...
1: begin
pc_backup <= CPU_ADDR;
force_mem_stall <= 1'b0;
debug_state <= debug_state + 1;
end
2: if (CPU_ADDR != pc_backup) begin // Let CPU run, until Program Counter changes...
force_mem_stall <= 1'b1;
debug_state <= debug_state + 1;
end
3: begin
if (KEY[3]) debug_state <= 0; // Wait until KEY[3] goes HIGH (not pressed) again.
end
// Multiple cycles...
4: begin
pc_backup <= CPU_ADDR;
force_mem_stall <= 1'b0;
debug_state <= debug_state + 1;
end
5: if (CPU_ADDR != pc_backup) begin // Let CPU run, until Program Counter changes...
force_mem_stall <= 1'b1;
debug_state <= debug_state + 1;
end
6: begin
if (run_count>0) begin
run_count <= run_count - 1;
debug_state <= 4;
end
else begin
if (KEY[2] & !SW[0]) debug_state <= 0; // Wait for KEY[2] to go HIGH (not pressed), and the RUN switch to go LOW, so we can stop after the breakpoint!
end
end
// Wait for RUN switch LOW, so we can stop after a breakpoint!
7: begin
if (!SW[0]) debug_state <= 0;
end
default:;
endcase
end
//assign LEDG = {6'b000000, BIOS_CS, MAINRAM_CS|MAINRAM2_CS};
PLL PLL_inst (
.inclk0 ( CLOCK_27[0] ),
.c0 ( DRAM_CONT_CLK ),
.c1 ( DRAM_CLK ),
.locked ( PLL_LOCKED )
);
reg [3:0] CLK_DIV;
always @(posedge DRAM_CONT_CLK) CLK_DIV <= CLK_DIV + 1;
wire SYS_CLK = CLK_DIV[2]/*synthesis keep*/; // SYS_CLK needs to be 1/8th the freq of DRAM_CONT_CLK (so the SDRAM module works properly).
reg [20:0] RESET_COUNT;
initial begin
RESET_COUNT <= 21'h2FFFFF;
SDRAM_INIT <= 1'b1;
end
reg SDRAM_INIT;
always @(posedge SYS_CLK or negedge KEY[0])
if (!KEY[0]) begin
RESET_COUNT <= 21'h2FFFFF;
SDRAM_INIT <= 1'b1;
end
else begin
if (RESET_COUNT>0 && PLL_LOCKED) RESET_COUNT <= RESET_COUNT - 1;
else SDRAM_INIT <= 1'b0;
end
wire MRESET_N = RESET_COUNT==0;
assign FL_WE_N = 1'b1;
assign FL_RST_N = 1'b1;
assign FL_OE_N = 1'b0;
assign FL_CE_N = 1'b0;
/*
wire [15:0] STACK_DATA_READ;
STACK_RAM STACK_RAM_inst (
.clock( SYS_CLK ),
//.address( BYTE_ADDR[12:2] ),
.address( SDRAM_ADDR[9:0] ),
//.byteena( {SDRAM_DS[0],SDRAM_DS[1]} ), // If you swap the DATA byte order, you MUST swap the Byte Enables too! lol
//.data( {SDRAM_DIN[7:0], SDRAM_DIN[15:8]} ), // (I'm such a moron. OzOnE)
// "Normal" byte order, for Indy core diag...
.byteena( SDRAM_DS[1:0] ), // If you swap the DATA byte order, you MUST swap the Byte Enables too! lol
.data( SDRAM_DIN ), // (I'm such a moron. OzOnE)
.wren( SDRAM_WE ),
.q( STACK_DATA_READ )
);
SCRATCH_RAM SCRATCH_RAM_inst (
.clock( SYS_CLK ),
.address( BYTE_ADDR[10:2] ),
.byteena( BYTE_ENA_BACKUP ),
.data( WRITE_DATA_BACKUP ),
.wren( (SCRATCH_CS && WRITE_STATE) ),
.q( SCRATCH_DOUT )
);
*/
/*
reg [15:0] SDRAM_WRITE_DATA;
assign DRAM_CKE = 1'b1;
wire [21:0] SDRAM_ADDR = SDRAM_ADDR_REG;
wire [15:0] SDRAM_DIN = SDRAM_WRITE_DATA;
wire [15:0] SDRAM_DOUT;
reg [1:0] SDRAM_DS;
reg SDRAM_OE;
reg SDRAM_WE;
sdram sdram_inst
(
// SDRAM chip interface...
.sd_data( DRAM_DQ ) , // inout [15:0] sd_data
.sd_addr( DRAM_ADDR ) , // output [11:0] sd_addr
.sd_ba( {DRAM_BA_1, DRAM_BA_0} ) , // output [1:0] sd_ba
.sd_dqm( {DRAM_UDQM, DRAM_LDQM} ) , // output [1:0] sd_dqm - ACTIVE LOW !!!
.sd_cs( DRAM_CS_N ) , // output sd_cs - ACTIVE LOW !!!
.sd_we( DRAM_WE_N ) , // output sd_we - ACTIVE LOW !!!
.sd_ras( DRAM_RAS_N ) , // output sd_ras - ACTIVE LOW !!!
.sd_cas( DRAM_CAS_N ) , // output sd_cas - ACTIVE LOW !!!
// User-side interface...
.init( SDRAM_INIT ) , // input init
.clk( DRAM_CONT_CLK ) , // input clk
.clkref( SYS_CLK ) , // input clkref
.din( SDRAM_DIN ) , // input [15:0] din
.dout( SDRAM_DOUT ) , // output [15:0] dout
.addr( SDRAM_ADDR ) , // input [21:0] addr
.ds( SDRAM_DS ) , // input [1:0] ds - ACTIVE HIGH!!
.oe( SDRAM_OE ) , // input oe - ACTIVE HIGH!!
.we( SDRAM_WE ) // input we - ACTIVE HIGH!!
);
wire CART_OE = (CART_CS & !SH2_WE_O);
wire SH2_SDRAM_WE = (SDRAM_CS & SH2_WE_O);
wire SH2_SDRAM_OE = (SDRAM_CS & !SH2_WE_O);
//assign SRAM_ADDR = MS_ADR_O[17:0];
//assign SRAM_UB_N = 1'b0;
//assign SRAM_LB_N = 1'b0;
//assign SRAM_CE_N = 1'b0;
//assign SRAM_OE_N = !( ( (MS_SDRAM_CS&MS_STB_O) | (SL_SDRAM_CS&SL_STB_O) ) & (!MS_WE_O | !SL_WE_O) );
//assign SRAM_WE_N = !( ( (MS_SDRAM_CS&MS_STB_O) | (SL_SDRAM_CS&SL_STB_O) ) & (MS_WE_O | SL_WE_O) );
//assign SRAM_OE_N = !SH2_SDRAM_OE;
//assign SRAM_WE_N = !SH2_SDRAM_WE;
reg [31:0] DUMMY_REG;
reg [21:0] SDRAM_ADDR_REG;
reg [15:0] SDRAM_DATA_READ;
reg [15:0] SDRAM_DATA_WRITE;
reg [31:0] SDRAM_LONG_WORD;
reg [31:0] DATA_TO_SLAVE;
reg [7:0] FL_BYTE_0;
reg [7:0] FL_BYTE_1;
reg [7:0] FL_BYTE_2;
reg [7:0] FL_BYTE_3;
reg [21:0] FL_ADDR_REG;
assign FL_ADDR = FL_ADDR_REG;
assign FL_RST_N = 1'b1;
assign FL_WE_N = 1'b1;
assign FL_OE_N = 1'b0;
assign FL_CE_N = 1'b0;
reg [3:0] SEL_O_REG;
reg [7:0] STATE;
always @(posedge SYS_CLK or negedge KEY[0])
if (!KEY[0]) begin
STATE <= 8'd0;
SDRAM_OE <= 1'b0;
SDRAM_WE <= 1'b0;
SDRAM_DS <= 2'b11;
end
else begin
case (STATE)
0: begin
SH2_ACK_I <= 1'b0;
if (SH2_CYC_O && SH2_STB_O) begin
SEL_O_REG <= SH2_SEL_O;
if (SH2_SDRAM_OE) begin
SDRAM_ADDR_REG <= SH2_ADR_O[18:1];
SDRAM_DS <= 2'b11;
SDRAM_OE <= 1'b1;
STATE <= 1;
end
else if (SH2_SDRAM_WE) begin
SDRAM_ADDR_REG <= SH2_ADR_O[18:1];
SDRAM_WRITE_DATA <= SH2_DAT_O[31:16];
SDRAM_DS <= 2'b11;
SDRAM_WE <= 1'b1;
if (SH2_SEL_O==4'b1111) begin
STATE <= 4;
end
else STATE <= 16;
end
else if (CART_OE) begin
FL_ADDR_REG <= SH2_ADR_O;
STATE <= 9;
end
else STATE <= 16;
end
end
// SDRAM READ...
1: begin
SDRAM_LONG_WORD[15:0] <= SDRAM_DOUT;
if (SH2_SEL_O==4'b1111) begin
SDRAM_OE <= 1'b1;
SDRAM_ADDR_REG <= SDRAM_ADDR_REG + 1;
STATE <= 2;
end
else begin
SDRAM_OE <= 1'b0;
STATE <= 16;
end
end
2: begin
SDRAM_LONG_WORD[31:16] <= SDRAM_DOUT;
SDRAM_OE <= 1'b0;
STATE <= 16;
end
// SDRAM_WRITE...
4: begin
SDRAM_ADDR_REG <= SDRAM_ADDR_REG + 1;
SDRAM_WRITE_DATA <= SH2_DAT_O[15:0];
SDRAM_WE <= 1'b1;
STATE <= 16;
end
// FLASH READ...
9: begin
FL_BYTE_0 <= FL_DQ;
STATE <= STATE + 1;
end
10: begin
FL_ADDR_REG <= FL_ADDR_REG + 1;
STATE <= STATE + 1;
end
11: begin
FL_BYTE_1 <= FL_DQ;
//STATE <= STATE + 1;
STATE <= STATE + 1;
end
12: begin
FL_ADDR_REG <= FL_ADDR_REG + 1;
STATE <= STATE + 1;
end
13: begin
FL_BYTE_2 <= FL_DQ;
STATE <= STATE + 1;
end
14: begin
FL_ADDR_REG <= FL_ADDR_REG + 1;
STATE <= STATE + 1;
end
15: begin
FL_BYTE_3 <= FL_DQ;
STATE <= STATE + 1;
end
// Return state...
16: begin
SDRAM_OE <= 1'b0;
SDRAM_WE <= 1'b0;
// STATE <= STATE + 1;
// end
// 17: begin
if (!force_mem_stall) begin
SH2_ACK_I <= 1'b1;
STATE <= STATE + 1;
end
end
17: begin
SH2_ACK_I <= 1'b0;
STATE <= STATE + 1;
end
18: begin
MASTER_SEL <= !MASTER_SEL; // Swap between Master and Slave SH2! TESTING !!!!!!!!!!!!!!
STATE <= 0;
end
default: ;
endcase
end
*/
wire [23:0] PATT_RGB;
wire PATT_HS_N;
wire PATT_VS_N;
wire [11:0] X_OUT;
wire [11:0] Y_OUT;
top_sync_vg_pattern top_sync_vg_pattern_inst
(
// .clk_27m( CLK_27M ) , // input clk_27m
.clk_74m( DRAM_CONT_CLK ) ,// input clk_74m
// .clk_148m( CLK_148M ) , // input clk_148m
.resetb( PLL_LOCKED ) , // input resetb
.adv7513_hs_n( PATT_HS_N ) , // output adv7513_hs_n
.adv7513_vs_n( PATT_VS_N ) , // output adv7513_vs_n
.adv7513_clk( PATT_CLK ) , // output adv7513_clk
.adv7513_d( PATT_RGB ) , // output [23:0] adv7513_d
// .adv7513_de( adv7513_de ) , // output adv7513_de
.x_out( X_OUT ) , // output [11:0] x_out
.y_out( Y_OUT ) // output [11:0] y_out
);
wire CMD_ADDR = (CPU_ADDR>=16'h0900 && CPU_ADDR<=16'h0954 && !CPU_RW);
wire DAT1_ADDR = (CPU_ADDR>=16'h0955 && CPU_ADDR<=16'h09A9 && !CPU_RW);
wire DAT2_ADDR = (CPU_ADDR>=16'h09AA && CPU_ADDR<=16'h09FF && !CPU_RW);
wire [4:0] CHAR_WR_ADDR = (CMD_ADDR) ? CPU_ADDR-16'h0900 :
(DAT1_ADDR) ? CPU_ADDR-16'h0955 :
CPU_ADDR-16'h09AA;
wire [31:0] CHAR_IN = {CPU_DATA_OUT,CPU_DATA_OUT,CPU_DATA_OUT,CPU_DATA_OUT};
wire CHAR_WREN = CMD_ADDR | DAT1_ADDR | DAT2_ADDR;
wire [3:0] CHAR_BYTEENA = {CMD_ADDR, DAT1_ADDR, DAT2_ADDR, 1'b0};
wire [23:0] OSD_RGB;
wire OSD_FRAME;
wire CHARBIT;
OSD OSD_inst
(
.clk( PATT_CLK ) , // input clk
.reset_n( KEY[0] ) , // input reset_n
.pixel( X_OUT ) , // input [11:0] pixel
.line( Y_OUT ) , // input [11:0] line
.vid_in( PATT_RGB ) , // input [23:0] vid_in
.vid_out( OSD_RGB ) , // output [23:0] vid_out
.osd_enable( 1'b1 ) , // input osd_enable
// .total_lines(total_lines) , // input [15:0] total_lines
.write_clk( SYS_CLK ) , // input write_clk
.char_wr_addr( CHAR_WR_ADDR ) , // input [4:0] char_wr_addr
.char_in( CHAR_IN ) , // input [31:0] char_in
.char_wren( CHAR_WREN ) , // input char_wren
.char_byteena( CHAR_BYTEENA ) , // input [3:0] char_byteena
.if_pc( MS_ADR_O ) , // input [31:0] if_pc
.cpu_data( MS_DAT_I ) , // input [31:0] cpu_data
.BIU( BIU_REG ) , // input [31:0] BIO
.string0( string0 ) , // input [63:0] string0
.RXDATA( RXDATA ) ,
.KEY_PRESSED( KEY_PRESSED ) ,
.KEY_RELEASED( KEY_RELEASED ) ,
.BP_MATCHED( BP_MATCHED ) ,
.osd_frame_out( OSD_FRAME ) , // output osd_frame
.charbit( CHARBIT ) // output charbit
);
parameter WINDOW_X = 258+2;
parameter WINDOW_Y = 64;
wire [10:0] WINDOW_WIDTH = 1024/* + source*/;
parameter WINDOW_HEIGHT = 512;
/*
wire [7:0] probe;
wire [7:0] source;
source source_inst (
.probe ( probe ),
.source ( source )
);
*/
reg PS1_WINDOW;
reg PS1_WINDOW_1;
reg [10:0] PS1_PIX;
reg [10:0] PS1_LINE;
reg [15:0] SRAM_PIXEL_DATA;
always @(posedge PATT_CLK) begin
PS1_WINDOW_1 <= PS1_WINDOW;
if (!PATT_VS_N) begin
PS1_LINE <= 0;
PS1_PIX <= 0;
end
else begin
if (PS1_WINDOW_1 & !PS1_WINDOW) begin
//PS1_PIX <= 0;
PS1_LINE <= PS1_LINE + 1;
end
else if (PS1_WINDOW) begin
PS1_PIX <= PS1_PIX + 1;
end
end
PS1_WINDOW <= (X_OUT>=WINDOW_X && X_OUT<=WINDOW_X+WINDOW_WIDTH-1 && Y_OUT>=WINDOW_Y && Y_OUT<=WINDOW_Y+WINDOW_HEIGHT-1);
SRAM_PIXEL_DATA <= SRAM_DQ;
end
assign VGA_R = (PS1_WINDOW) ? SRAM_PIXEL_DATA[4:1] : OSD_RGB[23:20];
assign VGA_G = (PS1_WINDOW) ? SRAM_PIXEL_DATA[9:6] : OSD_RGB[15:12];
assign VGA_B = (PS1_WINDOW) ? SRAM_PIXEL_DATA[14:11] : OSD_RGB[7:4];
assign VGA_HS = PATT_HS_N;
assign VGA_VS = PATT_VS_N;
//assign SRAM_UB_N = 1'b0;
//assign SRAM_LB_N = 1'b0;
//assign SRAM_WE_N = (RESET_COUNT>0) ? !GPU_DACK : VRAM_WE_N;
//assign SRAM_WE_N = 1'b1;
wire VRAM_WE_N = 1'b1;
//assign SRAM_OE_N = DMA2_ACTIVE; // Allow SRAM reads (to VGA) while DMA2 is NOT active.
//assign SRAM_OE_N = 1'b0; // Allow SRAM reads (to VGA) while DMA2 is NOT active.
wire [18:0] MY_SRAM_ADDR = /*(RESET_COUNT>0) ? DMA_BYTE_ADDR[19:1] :*/
/*(!VRAM_WE_N) ? VRAM_ADDR : */
{PS1_LINE[8:0], PS1_PIX[9:0]};
/*
wire [18:0] MY_SRAM_ADDR = (RESET_COUNT>0) ? DMA_BYTE_ADDR[19:1] : // TESTING!! (bypass FPGA GPU for now. Testing real PS1 GPU on GPIO). OzOnE.
(DMA2_ACTIVE) ? DMA_BYTE_ADDR[19:1] :
{PS1_LINE[8:0], PS1_PIX[9:0]};
*/
//assign SRAM_ADDR = MY_SRAM_ADDR[17:0]; // Lower 512KB (original onboard SRAM on DE1).
//assign SRAM_CE_N = MY_SRAM_ADDR[18]; // Lower 512KB (original onboard SRAM on DE1).
//assign GPIO_0[35] = !MY_SRAM_ADDR[18]; // Upper 512KB (piggy-backed chip!)
//assign SRAM_DQ = /*(GPU_DACK && RESET_COUNT>0) ? 16'hF000 :*/
// /*(!VRAM_WE_N) ? VRAM_DATA :*/ 16'hzzzz;
//assign SRAM_DQ = (SH2_SDRAM_WE) ? MS_DAT_I : 16'hzzzz;
/*
assign SRAM_DQ = (GPU_DACK && RESET_COUNT>0) ? 16'hF000 : // TESTING!! (bypass FPGA GPU for now. Testing real PS1 GPU on GPIO). OzOnE.
(DMA2_ACTIVE) ? SDRAM_DOUT : 16'hzzzz;
*/
wire [7:0] RXDATA;
keyboard keyboard_inst
(
.CLK( SYS_CLK ) , // input CLK
.PS2_CLK( PS2_CLK ) , // input PS2_CLK
.PS2_DAT( PS2_DAT ) , // input PS2_DATA
.RXDATA( RXDATA ) , // output [7:0] RXDATA