forked from camillasterud/gym-auv
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun.py
769 lines (690 loc) · 32.3 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
import os
import sys
import subprocess
import numpy as np
from time import time, sleep
import argparse
import json
import copy
import tensorflow as tf
import gym
import gym_auv
import gym_auv.reporting
#import logging
#logging.basicConfig()
#logging.getLogger().setLevel(logging.DEBUG)
from stable_baselines.common import set_global_seeds
from stable_baselines.common.policies import MlpPolicy, MlpLstmPolicy, MlpLnLstmPolicy
from stable_baselines.common.vec_env import VecVideoRecorder, DummyVecEnv, SubprocVecEnv
import stable_baselines.ddpg.policies
import stable_baselines.td3.policies
from stable_baselines.ddpg import AdaptiveParamNoiseSpec, NormalActionNoise, LnMlpPolicy
from stable_baselines import PPO2, DDPG, TD3, A2C, ACER, ACKTR
from sklearn.model_selection import ParameterGrid
from shapely import speedups
speedups.enable()
DIR_PATH = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
def _preprocess_custom_envconfig(rawconfig):
custom_envconfig = dict(zip(args.envconfig[::2], args.envconfig[1::2]))
for key in custom_envconfig:
try:
custom_envconfig[key] = float(custom_envconfig[key])
if (custom_envconfig[key] == int(custom_envconfig[key])):
custom_envconfig[key] = int(custom_envconfig[key])
except ValueError:
pass
return custom_envconfig
def create_env(env_id, envconfig, test_mode=False, render_mode='2d', pilot=None, verbose=False):
if pilot:
env = gym.make(env_id, env_config=envconfig, test_mode=test_mode, render_mode=render_mode, pilot=pilot, verbose=verbose)
else:
env = gym.make(env_id, env_config=envconfig, test_mode=test_mode, render_mode=render_mode, verbose=verbose)
return env
def make_mp_env(env_id, rank, envconfig, seed=0, pilot=None):
"""
Utility function for multiprocessed env.
:param env_id: (str) the environment ID
:param num_env: (int) the number of environments you wish to have in subprocesses
:param seed: (int) the inital seed for RNG
:param rank: (int) index of the subprocess
"""
def _init():
env = create_env(env_id, envconfig, pilot=pilot)
env.seed(seed + rank)
return env
set_global_seeds(seed)
return _init
def play_scenario(env, recorded_env, args, agent=None):
# if args.video:
# print('Recording enabled')
# recorded_env = VecVideoRecorder(env, args.video_dir, record_video_trigger=lambda x: x == 0,
# video_length=args.recording_length, name_prefix=args.video_name
# )
from pyglet.window import key
key_input = np.array([-1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
autopilot = False
print('Playing scenario: ', env)
# print('KEY BINDINGS')
# print('Lambda control: K, L')
# print('Toggle autopilot: A')
# print('Restart: R')
# print('Quit: Q')
def key_press(k, mod):
nonlocal autopilot
if k == key.DOWN: key_input[0] = -1
if k == key.UP: key_input[0] = 1
if k == key.LEFT: key_input[1] = 0.5
if k == key.RIGHT: key_input[1] = -0.5
if k == key.NUM_2: key_input[2] = -1
if k == key.NUM_1: key_input[2] = 1
if k == key.J: key_input[3] = -1
if k == key.U: key_input[3] = 1
if k == key.I: key_input[4] = -1
if k == key.K: key_input[4] = 1
if k == key.O: key_input[5] = -1
if k == key.P: key_input[5] = 1
if k == key.NUM_4: key_input[6] = -1
if k == key.NUM_3: key_input[6] = 1
if k == key.A: autopilot = not autopilot
def key_release(k, mod):
nonlocal restart, quit
if k == key.R:
restart = True
print('Restart')
if k == key.Q:
quit = True
print('quit')
if k == key.UP: key_input[0] = -1
if k == key.DOWN: key_input[0] = -1
if k == key.LEFT and key_input[1] != 0: key_input[1] = 0
if k == key.RIGHT and key_input[1] != 0: key_input[1] = 0
if k == key.NUM_2 and key_input[2] != 0: key_input[2] = 0
if k == key.NUM_1 and key_input[2] != 0: key_input[2] = 0
if k == key.U and key_input[3] != 0: key_input[3] = 0
if k == key.J and key_input[3] != 0: key_input[3] = 0
if k == key.I and key_input[4] != 0: key_input[4] = 0
if k == key.K and key_input[4] != 0: key_input[4] = 0
if k == key.O and key_input[5] != 0: key_input[5] = 0
if k == key.P and key_input[5] != 0: key_input[5] = 0
if k == key.NUM_4 and key_input[6] != 0: key_input[6] = 0
if k == key.NUM_3 and key_input[6] != 0: key_input[6] = 0
viewer = env._viewer2d if args.render in {'both', '2d'} else env._viewer3d
viewer.window.on_key_press = key_press
viewer.window.on_key_release = key_release
try:
while True:
t = time()
restart = False
t_steps = 0
quit = False
if (args.env == 'PathGeneration-v0'):
a = np.array([5.0, 5.0, 1.0, 1.0])
elif (args.env == 'PathColavControl-v0'):
a = np.array([0.0])
else:
a = np.array([0.0, 0.0])
obs = None
while True:
t, dt = time(), time()-t
if args.env == 'PathGeneration-v0':
a[0] += key_input[1]
a[1] = max(0, key_input[0], a[1] + 0.1*key_input[0])
a[2] += 0.1*key_input[2]
print('Applied action: ', a)
sleep(1)
elif (args.env == 'PathColavControl-v0'):
a[0] = 0.1*key_input[1]
else:
a[0] = key_input[0]
a[1] = key_input[1]
try:
env.rewarder.params["lambda"] = np.clip(np.power(10, np.log10(env.rewarder.params["lambda"]) + key_input[2]*0.05), 0, 1)
env.rewarder.params["eta"] = np.clip(env.rewarder.params["eta"] + key_input[6]*0.02, 0, 4)
except KeyError:
pass
if args.render in {'3d', 'both'}:
env._viewer3d.camera_height += 0.15*key_input[3]
env._viewer3d.camera_height = max(0, env._viewer3d.camera_height)
env._viewer3d.camera_distance += 0.3*key_input[4]
env._viewer3d.camera_distance = max(1, env._viewer3d.camera_distance)
env._viewer3d.camera_angle += 0.3*key_input[5]
elif args.render == '2d':
env._viewer2d.camera_zoom += 0.1*key_input[4]
env._viewer2d.camera_zoom = max(0, env._viewer2d.camera_zoom)
if autopilot and agent is not None:
if obs is None:
a = np.array([0.0, 0.0])
else:
a, _ = agent.predict(obs, deterministic=True)
obs, r, done, info = env.step(a)
if args.verbose > 0:
print(', '.join('{:.1f}'.format(x) for x in obs) + '(size {})'.format(len(obs)))
recorded_env.render()
t_steps += 1
if args.save_snapshots and not done:
if t_steps % 50 == 0:
env.save_latest_episode(save_history=False)
for size in (100, 200):#, 300, 400, 500):
gym_auv.reporting.plot_trajectory(
env, fig_dir='../logs/play_results/', fig_prefix=('_t_step_' + str(t_steps) + '_' + str(size)), local=True, size=size
)
if quit: raise KeyboardInterrupt
if done or restart: break
env.seed(np.random.randint(1000))
env.save_latest_episode()
gym_auv.reporting.report(env, report_dir='../logs/play_results/')
gym_auv.reporting.plot_trajectory(env, fig_dir='../logs/play_results/')
env.reset(save_history=False)
except KeyboardInterrupt:
pass
def main(args):
envconfig_string = args.envconfig
custom_envconfig = _preprocess_custom_envconfig(args.envconfig) if args.envconfig is not None else {}
env_id = 'gym_auv:' + args.env
env_name = env_id.split(':')[-1] if ':' in env_id else env_id
envconfig = gym_auv.SCENARIOS[env_name]['config'] if env_name in gym_auv.SCENARIOS else {}
envconfig.update(custom_envconfig)
NUM_CPU = 8
EXPERIMENT_ID = str(int(time())) + args.algo.lower()
model = {
'ppo': PPO2,
'ddpg': DDPG,
'td3': TD3,
'a2c': A2C,
'acer': ACER,
'acktr': ACKTR
}[args.algo.lower()]
if args.mode == 'play':
agent = model.load(args.agent) if args.agent is not None else None
envconfig_play = envconfig.copy()
envconfig_play['show_indicators'] = True
#envconfig_play['autocamera3d'] = False
env = create_env(env_id, envconfig_play, test_mode=True, render_mode=args.render, pilot=args.pilot, verbose=True)
print('Created environment instance')
if args.scenario:
env.load(args.scenario)
vec_env = DummyVecEnv([lambda: env])
recorded_env = VecVideoRecorder(vec_env, args.video_dir, record_video_trigger=lambda x: x==0,
video_length=args.recording_length, name_prefix=(args.env if args.video_name == 'auto' else args.video_name)
)
print(args.video_dir, args.video_name)
play_scenario(env, recorded_env, args, agent=agent)
recorded_env.env.close()
elif (args.mode == 'enjoy'):
agent = model.load(args.agent)
# params = agent.get_parameters()
# policy_weights = [
# params['model/pi_fc0/w:0'],
# params['model/pi_fc1/w:0'],
# params['model/pi/w:0']
# ]
# policy_biases = [
# params['model/pi_fc0/b:0'],
# params['model/pi_fc1/b:0'],
# params['model/pi/b:0']
# ]
# for param in params:
# print(param, params[param].shape)
video_folder = os.path.join(DIR_PATH, 'logs', 'videos', args.env, EXPERIMENT_ID)
os.makedirs(video_folder, exist_ok=True)
env = create_env(env_id, envconfig, test_mode=True, render_mode=args.render, pilot=args.pilot)
if args.scenario:
env.load(args.scenario)
vec_env = DummyVecEnv([lambda: env])
recorded_env = VecVideoRecorder(vec_env, video_folder, record_video_trigger=lambda x: x==0,
video_length=args.recording_length, name_prefix=(args.env if args.video_name == 'auto' else args.video_name)
)
obs = recorded_env.reset()
state = None
done = [False for _ in range(vec_env.num_envs)]
for _ in range(args.recording_length):
if args.recurrent:
action, _states = agent.predict(observation=obs, state=state, mask=done, deterministic=not args.stochastic)
state = _states
else:
action, _states = agent.predict(obs, deterministic=not args.stochastic)
obs, reward, done, info = recorded_env.step(action)
recorded_env.render()
recorded_env.close()
elif (args.mode == 'train'):
figure_folder = os.path.join(DIR_PATH, 'logs', 'figures', args.env, EXPERIMENT_ID)
os.makedirs(figure_folder, exist_ok=True)
scenario_folder = os.path.join(figure_folder, 'scenarios')
os.makedirs(scenario_folder, exist_ok=True)
video_folder = os.path.join(DIR_PATH, 'logs', 'videos', args.env, EXPERIMENT_ID)
recording_length = 8000
os.makedirs(video_folder, exist_ok=True)
agent_folder = os.path.join(DIR_PATH, 'logs', 'agents', args.env, EXPERIMENT_ID)
os.makedirs(agent_folder, exist_ok=True)
tensorboard_log = os.path.join(DIR_PATH, 'logs', 'tensorboard', args.env, EXPERIMENT_ID)
tensorboard_port = 6006
if (args.nomp or model == DDPG or model == TD3):
num_cpu = 1
vec_env = DummyVecEnv([lambda: create_env(env_id, envconfig, pilot=args.pilot)])
else:
num_cpu = NUM_CPU
vec_env = SubprocVecEnv([make_mp_env(env_id, i, envconfig, pilot=args.pilot) for i in range(num_cpu)])
if (args.agent is not None):
agent = model.load(args.agent)
agent.set_env(vec_env)
else:
if (model == PPO2):
if args.recurrent:
hyperparams = {
# 'n_steps': 1024,
# 'nminibatches': 32,
# 'lam': 0.95,
# 'gamma': 0.99,
# 'noptepochs': 10,
# 'ent_coef': 0.0,
# 'learning_rate': 0.0003,
# 'cliprange': 0.2,
'n_steps': 1024,
'nminibatches': 1,
'lam': 0.98,
'gamma': 0.999,
'noptepochs': 4,
'ent_coef': 0.01,
'learning_rate': 2e-3,
}
class CustomLSTMPolicy(MlpLstmPolicy):
def __init__(self, sess, ob_space, ac_space, n_env, n_steps, n_batch, n_lstm=256, reuse=False, **_kwargs):
super().__init__(sess, ob_space, ac_space, n_env, n_steps, n_batch, n_lstm, reuse,
net_arch=[256, 256, 'lstm', dict(vf=[64], pi=[64])],
**_kwargs)
agent = PPO2(CustomLSTMPolicy,
vec_env, verbose=True, tensorboard_log=tensorboard_log,
**hyperparams
)
else:
hyperparams = {
# 'n_steps': 1024,
# 'nminibatches': 32,
# 'lam': 0.95,
# 'gamma': 0.99,
# 'noptepochs': 10,
# 'ent_coef': 0.0,
# 'learning_rate': 0.0003,
# 'cliprange': 0.2,
'n_steps': 1024,
'nminibatches': 32,
'lam': 0.98,
'gamma': 0.999,
'noptepochs': 4,
'ent_coef': 0.01,
'learning_rate': 2e-4,
}
#policy_kwargs = dict(act_fun=tf.nn.tanh, net_arch=[64, 64, 64])
#policy_kwargs = dict(net_arch=[64, 64, 64])
layers = [256, 128, 64]
#layers = [64, 64]
policy_kwargs = dict(net_arch = [dict(vf=layers, pi=layers)])
agent = PPO2(MlpPolicy,
vec_env, verbose=True, tensorboard_log=tensorboard_log,
**hyperparams, policy_kwargs=policy_kwargs
)
elif (model == DDPG):
hyperparams = {
'memory_limit': 1000000,
'normalize_observations': True,
'normalize_returns': False,
'gamma': 0.98,
'actor_lr': 0.00156,
'critic_lr': 0.00156,
'batch_size': 256,
'param_noise': AdaptiveParamNoiseSpec(initial_stddev=0.287, desired_action_stddev=0.287)
}
agent = DDPG(LnMlpPolicy,
vec_env, verbose=True, tensorboard_log=tensorboard_log, **hyperparams
)
elif (model == TD3):
action_noise = NormalActionNoise(mean=np.zeros(2), sigma=0.1*np.ones(2))
agent = TD3(stable_baselines.td3.MlpPolicy,
vec_env, verbose=True, tensorboard_log=tensorboard_log, action_noise=action_noise
)
elif model == A2C:
hyperparams = {
'n_steps': 5,
'gamma': 0.995,
'ent_coef': 0.00001,
'learning_rate': 2e-4,
}
layers = [64, 64]
policy_kwargs = dict(net_arch = [dict(vf=layers, pi=layers)])
agent = A2C(MlpPolicy,
vec_env, verbose=True, tensorboard_log=tensorboard_log,
**hyperparams, policy_kwargs=policy_kwargs
)
elif model == ACER:
agent = ACER(MlpPolicy, vec_env, verbose=True, tensorboard_log=tensorboard_log)
elif model == ACKTR:
agent = ACKTR(MlpPolicy, vec_env, verbose=True, tensorboard_log=tensorboard_log)
print('Training {} agent on "{}"'.format(args.algo.upper(), env_id))
n_updates = 0
n_episodes = 0
def callback(_locals, _globals):
nonlocal n_updates
nonlocal n_episodes
sys.stdout.write('Training update: {}\r'.format(n_updates))
sys.stdout.flush()
_self = _locals['self']
vec_env = _self.get_env()
class Struct(object): pass
report_env = Struct()
report_env.history = []
report_env.config = envconfig
report_env.nsensors = report_env.config["n_sensors_per_sector"]*report_env.config["n_sectors"]
report_env.sensor_angle = 2*np.pi/(report_env.nsensors + 1)
report_env.last_episode = vec_env.get_attr('last_episode')[0]
report_env.config = vec_env.get_attr('config')[0]
report_env.obstacles = vec_env.get_attr('obstacles')[0]
env_histories = vec_env.get_attr('history')
for episode in range(max(map(len, env_histories))):
for env_idx in range(len(env_histories)):
if (episode < len(env_histories[env_idx])):
report_env.history.append(env_histories[env_idx][episode])
report_env.episode = len(report_env.history) + 1
total_t_steps = _self.get_env().get_attr('total_t_steps')[0]*num_cpu
agent_filepath = os.path.join(agent_folder, str(total_t_steps) + '.pkl')
if model == PPO2:
recording_criteria = n_updates % 10 == 0
report_criteria = True
_self.save(agent_filepath)
elif model == A2C or model == ACER or model == ACKTR:
save_criteria = n_updates % 100 == 0
recording_criteria = n_updates % 1000 == 0
report_criteria = True
if save_criteria:
_self.save(agent_filepath)
elif model == DDPG or model == TD3:
save_criteria = n_updates % 10000 == 0
recording_criteria = n_updates % 50000 == 0
report_criteria = report_env.episode > n_episodes
if save_criteria:
_self.save(agent_filepath)
if report_env.last_episode is not None and len(report_env.history) > 0 and report_criteria:
try:
#gym_auv.reporting.plot_trajectory(report_env, fig_dir=scenario_folder, fig_prefix=args.env + '_ep_{}'.format(report_env.episode))
gym_auv.reporting.report(report_env, report_dir=figure_folder)
#vec_env.env_method('save', os.path.join(scenario_folder, '_ep_{}'.format(report_env.episode)))
except OSError as e:
print("Ignoring reporting OSError:")
print(repr(e))
if recording_criteria:
if args.pilot:
cmd = 'python run.py enjoy {} --agent "{}" --video-dir "{}" --video-name "{}" --recording-length {} --algo {} --pilot {} --envconfig {}{}'.format(
args.env, agent_filepath, video_folder, args.env + '-' + str(total_t_steps), recording_length, args.algo, args.pilot, envconfig_string,
' --recurrent' if args.recurrent else ''
)
else:
cmd = 'python run.py enjoy {} --agent "{}" --video-dir "{}" --video-name "{}" --recording-length {} --algo {} --envconfig {}{}'.format(
args.env, agent_filepath, video_folder, args.env + '-' + str(total_t_steps), recording_length, args.algo, envconfig_string,
' --recurrent' if args.recurrent else ''
)
subprocess.Popen(cmd)
n_episodes = report_env.episode
n_updates += 1
agent.learn(
total_timesteps=1500000,
tb_log_name='log',
callback=callback
)
elif (args.mode in ['policyplot', 'vectorfieldplot', 'streamlinesplot']):
figure_folder = os.path.join(DIR_PATH, 'logs', 'plots', args.env, EXPERIMENT_ID)
os.makedirs(figure_folder, exist_ok=True)
agent = PPO2.load(args.agent)
if args.testvals:
testvals = json.load(open(args.testvals, 'r'))
valuegrid = list(ParameterGrid(testvals))
for valuedict in valuegrid:
customconfig = envconfig.copy()
customconfig.update(valuedict)
env = create_env(env_id, envconfig, test_mode=True, pilot=args.pilot)
valuedict_str = '_'.join((key + '-' + str(val) for key, val in valuedict.items()))
print('Running {} test for {}...'.format(args.mode, valuedict_str))
if args.mode == 'policyplot':
gym_auv.reporting.plot_actions(env, agent, fig_dir=figure_folder, fig_prefix=valuedict_str)
elif args.mode == 'vectorfieldplot':
gym_auv.reporting.plot_vector_field(env, agent, fig_dir=figure_folder, fig_prefix=valuedict_str)
elif args.mode == 'streamlinesplot':
gym_auv.reporting.plot_streamlines(env, agent, fig_dir=figure_folder, fig_prefix=valuedict_str)
else:
env = create_env(env_id, envconfig, test_mode=True, pilot=args.pilot)
with open(os.path.join(figure_folder, 'config.json'), 'w') as f:
json.dump(env.config, f)
if args.mode == 'policyplot':
gym_auv.reporting.plot_actions(env, agent, fig_dir=figure_folder)
elif args.mode == 'vectorfieldplot':
gym_auv.reporting.plot_vector_field(env, agent, fig_dir=figure_folder)
elif args.mode == 'streamlinesplot':
gym_auv.reporting.plot_streamlines(env, agent, fig_dir=figure_folder)
print('Output folder: ', figure_folder)
elif args.mode == 'test':
figure_folder = os.path.join(DIR_PATH, 'logs', 'tests', args.env, EXPERIMENT_ID)
scenario_folder = os.path.join(figure_folder, 'scenarios')
video_folder = os.path.join(figure_folder, 'videos')
os.makedirs(figure_folder, exist_ok=True)
os.makedirs(scenario_folder, exist_ok=True)
os.makedirs(video_folder, exist_ok=True)
if not args.onlyplot:
agent = model.load(args.agent)
def create_test_env(video_name_prefix, envconfig=envconfig):
print('Creating test environment: ' + env_id)
env = create_env(env_id, envconfig, test_mode=True, render_mode=args.render if args.video else None, pilot=args.pilot)
vec_env = DummyVecEnv([lambda: env])
if args.video:
video_length = min(500, args.recording_length)
recorded_env = VecVideoRecorder(vec_env, video_folder, record_video_trigger=lambda x: (x%video_length) == 0,
video_length=video_length, name_prefix=video_name_prefix
)
active_env = recorded_env if args.video else vec_env
return env, active_env
failed_tests = []
def run_test(id, reset=True, report_dir=figure_folder, scenario=None, max_t_steps=None, env=None, active_env=None):
nonlocal failed_tests
if env is None or active_env is None:
env, active_env = create_test_env(video_name_prefix=args.env + '_' + id)
if scenario is not None:
obs = active_env.reset()
env.load(args.scenario)
print('Loaded', args.scenario)
else:
if reset:
obs = active_env.reset()
else:
obs = env.observe()
gym_auv.reporting.plot_scenario(env, fig_dir=scenario_folder, fig_postfix=id, show=args.onlyplot)
if args.onlyplot:
return
cumulative_reward = 0
t_steps = 0
if max_t_steps is None:
done = False
else:
done = t_steps > max_t_steps
while not done:
action, _states = agent.predict(obs, deterministic=not args.stochastic)
obs, reward, done, info = active_env.step(action)
if args.video:
active_env.render()
t_steps += 1
cumulative_reward += reward[0]
report_msg = '{:<20}{:<20}{:<20.2f}{:<20.2%}\r'.format(
id, t_steps, cumulative_reward, info[0]['progress'])
sys.stdout.write(report_msg)
sys.stdout.flush()
if args.save_snapshots and t_steps % 30 == 0 and not done:
env.save_latest_episode(save_history=False)
for size in (20, 50, 100, 200, 300, 400, 500):
gym_auv.reporting.plot_trajectory(
env, fig_dir=scenario_folder, fig_prefix=(args.env + '_t_step_' + str(t_steps) + '_' + str(size) + '_' + id), local=True, size=size
)
elif done:
gym_auv.reporting.plot_trajectory(env, fig_dir=scenario_folder, fig_prefix=(args.env + '_' + id))
env.close()
gym_auv.reporting.report(env, report_dir=report_dir, lastn=-1)
#gym_auv.reporting.plot_trajectory(env, fig_dir=scenario_folder, fig_prefix=(args.env + '_' + id))
#env.save(os.path.join(scenario_folder, id))
if env.collision:
failed_tests.append(id)
with open(os.path.join(figure_folder, 'failures.txt'), 'w') as f:
f.write(', '.join(map(str, failed_tests)))
return copy.deepcopy(env.last_episode)
print('Testing scenario "{}" for {} episodes.\n '.format(args.env, args.episodes))
report_msg_header = '{:<20}{:<20}{:<20}{:<20}{:<20}{:<20}{:<20}'.format('Episode', 'Timesteps', 'Cum. Reward', 'Progress', 'Collisions', 'CT-Error [m]', 'H-Error [deg]')
print(report_msg_header)
print('-'*len(report_msg_header))
if args.testvals:
testvals = json.load(open(args.testvals, 'r'))
valuegrid = list(ParameterGrid(testvals))
if args.scenario:
if args.testvals:
episode_dict = {}
for valuedict in valuegrid:
customconfig = envconfig.copy()
customconfig.update(valuedict)
env, active_env = create_test_env(envconfig=customconfig)
valuedict_str = '_'.join((key + '-' + str(val) for key, val in valuedict.items()))
colorval = -np.log10(valuedict['reward_lambda']) #should be general
rep_subfolder = os.path.join(figure_folder, valuedict_str)
os.makedirs(rep_subfolder, exist_ok=True)
for episode in range(args.episodes):
last_episode = run_test(valuedict_str + '_ep' + str(episode), report_dir=rep_subfolder)
episode_dict[valuedict_str] = [last_episode, colorval]
print('Plotting all')
gym_auv.reporting.plot_trajectory(env, fig_dir=scenario_folder, fig_prefix=(args.env + '_all_agents'), episode_dict=episode_dict)
else:
run_test("ep0", reset=True, scenario=args.scenario)
else:
if args.testvals:
episode_dict = {}
agent_index = 1
for valuedict in valuegrid:
customconfig = envconfig.copy()
customconfig.update(valuedict)
env, active_env = create_test_env(envconfig=customconfig)
valuedict_str = '_'.join((key + '-' + str(val) for key, val in valuedict.items()))
colorval = np.log10(valuedict['reward_lambda']) #should be general
rep_subfolder = os.path.join(figure_folder, valuedict_str)
os.makedirs(rep_subfolder, exist_ok=True)
for episode in range(args.episodes):
last_episode = run_test(valuedict_str + '_ep' + str(episode), report_dir=rep_subfolder)
episode_dict['Agent ' + str(agent_index)] = [last_episode, colorval]
agent_index += 1
gym_auv.reporting.plot_trajectory(env, fig_dir=figure_folder, fig_prefix=(args.env + '_all_agents'), episode_dict=episode_dict)
else:
env, active_env = create_test_env(video_name_prefix=args.env)
for episode in range(args.episodes):
run_test('ep' + str(episode), env=env, active_env=active_env)
if args.video and active_env:
active_env.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'mode',
help='Which program mode to run.',
choices=['play', 'train', 'enjoy', 'test', 'policyplot', 'vectorfieldplot', 'streamlinesplot'],
)
parser.add_argument(
'env',
help='Name of the gym environment to run.',
choices=gym_auv.SCENARIOS.keys()
)
parser.add_argument(
'--agent',
help='Path to the RL agent to simulate.',
)
parser.add_argument(
'--video-dir',
help='Dir for output video.',
default='../logs/videos/'
)
parser.add_argument(
'--video-name',
help='Name of output video.',
default='auto'
)
parser.add_argument(
'--algo',
help='RL algorithm to use.',
default='ppo',
choices=['ppo', 'ddpg', 'td3', 'a2c', 'acer', 'acktr']
)
parser.add_argument(
'--render',
help='Rendering mode to use.',
default='2d',
choices=['2d', '3d', 'both'] #'both' currently broken
)
parser.add_argument(
'--recording-length',
help='Timesteps to simulate in enjoy mode.',
type=int,
default=2000
)
parser.add_argument(
'--episodes',
help='Number of episodes to simulate in test mode.',
type=int,
default=1
)
parser.add_argument(
'--video',
help='Record video for test mode.',
action='store_true'
)
parser.add_argument(
'--onlyplot',
help='Skip simulations, only plot scenario.',
action='store_true'
)
parser.add_argument(
'--scenario',
help='Path to scenario file containing environment data to be loaded.',
)
parser.add_argument(
'--verbose',
help='Print debugging information.',
action='store_true'
)
parser.add_argument(
'--envconfig',
help='Override environment config parameters.',
nargs='*'
)
parser.add_argument(
'--nomp',
help='Only use single CPU core for training.',
action='store_true'
)
parser.add_argument(
'--stochastic',
help='Use stochastic actions.',
action='store_true'
)
parser.add_argument(
'--recurrent',
help='Use RNN for policy network.',
action='store_true'
)
parser.add_argument(
'--pilot',
help='If training in a controller environment, this is the pilot agent to control.',
)
parser.add_argument(
'--testvals',
help='Path to JSON file containing config values to test.',
)
parser.add_argument(
'--save-snapshots',
help='Save snapshots of the vessel trajectory on a fixed interval.',
)
args = parser.parse_args()
from win10toast import ToastNotifier
toaster = ToastNotifier()
try:
main(args)
toaster.show_toast("run.py", "Program is done", duration=10)
except Exception as e:
toaster.show_toast("run.py", "Program has crashed", duration=10)
raise e