-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel_search.py
127 lines (100 loc) · 4.49 KB
/
model_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from genotypes import PRIMITIVES
from operations import *
from utils import drop_path
class Cell(nn.Module):
def __init__(self, genotype, C_prev_prev, C_prev, C, reduction, reduction_prev):
super(Cell, self).__init__()
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0)
if reduction:
op_names, indices = zip(*genotype.reduce)
concat = genotype.reduce_concat
else:
op_names, indices = zip(*genotype.normal)
concat = genotype.normal_concat
self._compile(C, op_names, indices, concat, reduction)
def _compile(self, C, op_names, indices, concat, reduction):
assert len(op_names) == len(indices)
self._steps = len(op_names) // 2
self._concat = concat
self.multiplier = len(op_names)//2
k = sum(1 for i in range(self._steps) for n in range(2 + i))
self.cell_info = [False] * k * len(PRIMITIVES)
self._ops = nn.ModuleList()
for i in range(self._steps):
for _ in range(2):
for name in PRIMITIVES:
stride = 2 if reduction else 1
op = OPS[name](C, stride, True)
self._ops += [op]
for _ in range(i):
for name in PRIMITIVES:
stride = 1
op = OPS[name](C, stride, True)
self._ops += [op]
cur = sum(1 for cnt in range(i) for n in range(2 + cnt))
op1_id = PRIMITIVES.index(op_names[2 * i])
op2_id = PRIMITIVES.index(op_names[2 * i + 1])
self.cell_info[(cur + indices[2 * i])*len(PRIMITIVES) + op1_id] = True
self.cell_info[(cur + indices[2 * i + 1])*len(PRIMITIVES) + op2_id] = True
self._indices = indices
self._op_names = op_names
def forward(self, s0, s1, drop_prob):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
for i in range(self._steps):
cur = sum(1 for cnt in range(i) for n in range(2 + cnt))
h1 = states[self._indices[2 * i]]
op1_id = PRIMITIVES.index(self._op_names[2 * i])
op1 = self._ops[(cur + self._indices[2 * i])*len(PRIMITIVES) + op1_id]
h2 = states[self._indices[2 * i + 1]]
op2_id = PRIMITIVES.index(self._op_names[2 * i + 1])
op2 = self._ops[(cur + self._indices[2 * i + 1])*len(PRIMITIVES) + op2_id]
h1 = op1(h1)
h2 = op2(h2)
if self.training and drop_prob > 0.:
if not isinstance(op1, Identity):
h1 = drop_path(h1, drop_prob)
if not isinstance(op2, Identity):
h2 = drop_path(h2, drop_prob)
s = h1 + h2
states += [s]
return torch.cat([states[i] for i in self._concat], dim=1)
class NetworkCIFAR(nn.Module):
def __init__(self, C, num_classes, layers, genotype):
super(NetworkCIFAR, self).__init__()
self._layers = layers
self.arch_info = []
stem_multiplier = 3
C_curr = stem_multiplier * C
self.stem = nn.Sequential(
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
nn.BatchNorm2d(C_curr)
)
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
self.cells = nn.ModuleList()
reduction_prev = False
for i in range(layers):
if i in [layers // 3, 2 * layers // 3]:
C_curr *= 2
reduction = True
else:
reduction = False
cell = Cell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
self.cells += [cell]
self.arch_info.append(cell.cell_info)
C_prev_prev, C_prev = C_prev, cell.multiplier * C_curr
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
def forward(self, input):
s0 = s1 = self.stem(input)
for i, cell in enumerate(self.cells):
s0, s1 = s1, cell(s0, s1, self.drop_path_prob)
out = self.global_pooling(s1)
logits = self.classifier(out.view(out.size(0), -1))
return logits