-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet.c
414 lines (350 loc) · 9.32 KB
/
net.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
/**
* INCLUDES
**/
#include "pulp_train.h"
#include "net.h"
#include "stats.h"
#include "init-defines.h"
#include "io_data.h"
/**
* DATA
**/
// Define loss
PI_L1 float loss = 0;
// Define DNN blobs
PI_L1 struct blob layer0_in, layer0_wgt, layer0_out;
PI_L1 struct blob layer1_in, layer1_out;
PI_L1 struct blob layer2_in, layer2_wgt, layer2_out;
// Define DNN layer structures
PI_L1 struct Conv2D_args l0_args;
PI_L1 struct act_args l1_args;
PI_L1 struct Linear_args l2_args;
// Define kernel tensors
PI_L1 float l0_ker[Tin_C_l0 * Tout_C_l0 * Tker_H_l0 * Tker_W_l0];
PI_L1 float l2_ker[Tin_C_l2 * Tout_C_l2 * Tker_H_l2 * Tker_W_l2];
// Define kernel grad tensors
PI_L1 float l0_ker_diff[Tin_C_l0 * Tout_C_l0 * Tker_H_l0 * Tker_W_l0];
PI_L1 float l2_ker_diff[Tin_C_l2 * Tout_C_l2 * Tker_H_l2 * Tker_W_l2];
// Define I/O tensors
PI_L1 float l0_in[Tin_C_l0 * Tin_H_l0 * Tin_W_l0];
PI_L1 float l1_in[Tin_C_l1 * Tin_H_l1 * Tin_W_l1];
PI_L1 float l2_in[Tin_C_l2 * Tin_H_l2 * Tin_W_l2];
PI_L1 float l2_out[Tout_C_l2 * Tout_H_l2 * Tout_W_l2];
// Define IM2COL buffer for all the convolutions
PI_L1 float im2col_buffer[Tout_C_l0*Tker_H_l0*Tker_W_l0*Tin_H_l0*Tin_W_l0];
// Define transposition / block transposition buffer for all conv2d and PW layers
PI_L1 float bt_buffer[1];
// Define error propagation tensors
PI_L1 float l1_in_diff[Tin_C_l1 * Tin_H_l1 * Tin_W_l1];
PI_L1 float l2_in_diff[Tin_C_l2 * Tin_H_l2 * Tin_W_l2];
PI_L1 float l2_out_diff[Tout_C_l2 * Tout_H_l2 * Tout_W_l2];
// Loss function configuration structure
PI_L1 struct loss_args loss_args;
/**
* DNN BACKEND FUNCTIONS
**/
// DNN initialization function
void DNN_init()
{
// Layer 0
for(int i=0; i<Tin_C_l0*Tin_H_l0*Tin_W_l0; i++) l0_in[i] = INPUT[i];
for(int i=0; i<Tin_C_l0*Tout_C_l0*Tker_H_l0*Tker_W_l0; i++) l0_ker[i] = init_WGT_l0[i];
// Layer 2
for(int i=0; i<Tin_C_l2*Tout_C_l2*Tker_H_l2*Tker_W_l2; i++) l2_ker[i] = init_WGT_l2[i];
// Connect tensors to blobs
// Layer 0
layer0_in.data = l0_in;
layer0_in.dim = Tin_C_l0*Tin_H_l0*Tin_W_l0;
layer0_in.C = Tin_C_l0;
layer0_in.H = Tin_H_l0;
layer0_in.W = Tin_W_l0;
layer0_wgt.data = l0_ker;
layer0_wgt.diff = l0_ker_diff;
layer0_wgt.dim = Tin_C_l0*Tout_C_l0*Tker_H_l0*Tker_W_l0;
layer0_wgt.C = Tin_C_l0;
layer0_wgt.H = Tker_H_l0;
layer0_wgt.W = Tker_W_l0;
layer0_out.data = l1_in;
layer0_out.diff = l1_in_diff;
layer0_out.dim = Tin_C_l1*Tin_H_l1*Tin_W_l1;
layer0_out.C = Tout_C_l0;
layer0_out.H = Tout_H_l0;
layer0_out.W = Tout_W_l0;
// Layer 1
layer1_in.data = l1_in;
layer1_in.diff = l1_in_diff;
layer1_in.dim = Tin_C_l1*Tin_H_l1*Tin_W_l1;
layer1_in.C = Tin_C_l1;
layer1_in.H = Tin_H_l1;
layer1_in.W = Tin_W_l1;
layer1_out.data = l2_in;
layer1_out.diff = l2_in_diff;
layer1_out.dim = Tin_C_l2*Tin_H_l2*Tin_W_l2;
layer1_out.C = Tout_C_l1;
layer1_out.H = Tout_H_l1;
layer1_out.W = Tout_W_l1;
// Layer 2
layer2_in.data = l2_in;
layer2_in.diff = l2_in_diff;
layer2_in.dim = Tin_C_l2*Tin_H_l2*Tin_W_l2;
layer2_in.C = Tin_C_l2;
layer2_in.H = Tin_H_l2;
layer2_in.W = Tin_W_l2;
layer2_wgt.data = l2_ker;
layer2_wgt.diff = l2_ker_diff;
layer2_wgt.dim = Tin_C_l2*Tout_C_l2*Tker_H_l2*Tker_W_l2;
layer2_wgt.C = Tin_C_l2;
layer2_wgt.H = Tker_H_l2;
layer2_wgt.W = Tker_W_l2;
layer2_out.data = l2_out;
layer2_out.diff = l2_out_diff;
layer2_out.dim = Tout_C_l2*Tout_H_l2*Tout_W_l2;
layer2_out.C = Tout_C_l2;
layer2_out.H = Tout_H_l2;
layer2_out.W = Tout_W_l2;
// Configure layer structures
// Layer 0
l0_args.input = &layer0_in;
l0_args.coeff = &layer0_wgt;
l0_args.output = &layer0_out;
l0_args.skip_in_grad = 1;
l0_args.Lpad = 0;
l0_args.Rpad = 0;
l0_args.Upad = 0;
l0_args.Dpad = 0;
l0_args.stride_h = 1;
l0_args.stride_w = 1;
l0_args.i2c_buffer = (float*) im2col_buffer;
l0_args.bt_buffer = (float*) bt_buffer;
l0_args.HWC = 0;
l0_args.opt_matmul_type_fw = MATMUL_TYPE_FW_L0;
l0_args.opt_matmul_type_wg = MATMUL_TYPE_WG_L0;
l0_args.opt_matmul_type_ig = MATMUL_TYPE_IG_L0;
l0_args.USE_IM2COL = 1;
l0_args.USE_DMA_IM2COL = 0;
// Layer 1
l1_args.input = &layer1_in;
l1_args.output = &layer1_out;
// Layer 2
l2_args.input = &layer2_in;
l2_args.coeff = &layer2_wgt;
l2_args.output = &layer2_out;
l2_args.skip_in_grad = 0;
l2_args.opt_matmul_type_fw = MATMUL_TYPE_FW_L2;
l2_args.opt_matmul_type_wg = MATMUL_TYPE_WG_L2;
l2_args.opt_matmul_type_ig = MATMUL_TYPE_IG_L2;
}
// Forward pass function
void forward()
{
pulp_conv2d_fp32_fw_cl(&l0_args);
pulp_relu_fp32_fw_cl(&l1_args);
pulp_linear_fp32_fw_cl(&l2_args);
}
// Backward pass function
void backward()
{
/**
* EXERCISE 3 - BACKWARD
*/
/* YOUR CODE HERE */
/**
* END OF EXERCISE 3 - BACKWARD
*/
}
// Compute loss and output gradient
void compute_loss()
{
loss_args.output = &layer2_out;
loss_args.target = LABEL;
loss_args.wr_loss = &loss;
/**
* EXERCISE 2 - LOSS FUNCTION
*/
pulp_MSELoss(&loss_args);
/**
* END OF EXERCISE 2 - LOSS FUNCTION
*/
}
/**
* EXERCISE 4 - WEIGHT UPDATE
*/
void update_weights()
{
struct optim_args opt_l0;
opt_l0.weights = /* YOUR CODE HERE, REMOVE NULL; */ NULL;
opt_l0.learning_rate = LEARNING_RATE;
pi_cl_team_fork(NUM_CORES, pulp_gradient_descent_fp32, &opt_l0);
struct optim_args opt_l2;
opt_l2.weights = /* YOUR CODE HERE, REMOVE NULL; */ NULL;
opt_l2.learning_rate = LEARNING_RATE;
pi_cl_team_fork(NUM_CORES, pulp_gradient_descent_fp32, &opt_l2);
}
/**
* END OF EXERCISE 4 - WEIGHT UPDATE
*/
/**
* DATA VISUALIZATION AND CHECK TOOLS
**/
// Function to print FW output
void print_output()
{
printf("\nLayer 2 output:\n");
for (int i=0; i<Tout_C_l2*Tout_H_l2*Tout_W_l2; i++)
{
printf("%f ", l2_out[i]);
// Newline when an output row ends
// if(!(i%Tout_W_l2)) printf("\n");
// Newline when an output channel ends
if(!(i%Tout_W_l2*Tout_H_l2)) printf("\n");
}
printf("\n");
}
// Function to print the gradients
void print_gradients()
{
printf("Layer 2 output gradient:\n");
for (int i=0; i<Tout_C_l2*Tout_H_l2*Tout_W_l2; i++) printf("%f ", l2_out_diff[i]);
printf("\n\nLayer 2 weight gradient:\n");
for (int i=0; i<Tout_C_l2*Tin_C_l2*Tker_H_l2*Tker_W_l2; i++) printf("%f ", l2_ker_diff[i]);
printf("\n\nLayer 2 input gradient:\n");
for (int i=0; i<Tin_C_l2*Tout_H_l2*Tout_W_l2; i++) printf("%f ", l2_in_diff[i]);
printf("\n\nLayer 1 input gradient:\n");
for (int i=0; i<Tout_C_l2*Tout_H_l2*Tout_W_l2; i++) printf("%f ", l1_in_diff[i]);
printf("\n\nLayer 0 weight gradient:\n");
for (int i=0; i<Tout_C_l0*Tin_C_l0*Tker_H_l0*Tker_W_l0; i++) printf("%f ", l0_ker_diff[i]);
printf("\n\n");
}
// Function to print the weight data
void print_weights()
{
//printf("Layer 0 weights:\n");
//for (int i=0; i<Tout_C_l2*Tin_C_l2*Tker_H_l2*Tker_W_l2; i++) printf("%f ", l2_ker[i]);
printf("Layer 2 weights:\n");
for (int i=0; i<Tout_C_l0*Tin_C_l0*Tker_H_l0*Tker_W_l0; i++) printf("%f ", l0_ker[i]);
printf("\n\n");
}
/**
* EXERCISE 0 - PRINT DATA
*/
void print_input()
{
printf("\nLayer 0 input:\n");
for (int i=0; i<Tin_C_l0*Tin_H_l0*Tin_W_l0; i++)
{
/* YOUR CODE HERE */
}
printf("\n");
}
void print_label()
{
printf("\nLabel is:\n");
for (int i=0; i<Tout_C_l2*Tout_H_l2*Tout_W_l2; i++)
{
/* YOUR CODE HERE */
}
printf("\n");
}
/**
* END OF EXERCISE 0 - PRINT DATA
*/
// Function to check post-training output wrt Golden Model (GM)
void check_post_training_output()
{
int integrity_check = 0;
integrity_check = verify_tensor(l2_out, REFERENCE_OUTPUT, Tout_C_l2*Tout_H_l2*Tout_W_l2, TOLERANCE);
if (integrity_check > 0)
printf("\n*** UPDATED OUTPUT NOT MATCHING GOLDEN MODEL ***\n");
}
/**
* DNN MODEL TRAINING
**/
// Call for a complete training step
void net_step()
{
INIT_STATS();
PRE_START_STATS();
printf("Initializing network..\n");
DNN_init();
/**
* EXERCISE 0 - PRINT DATA
*/
printf("\nPrinting DNN input..\n");
/* YOUR CODE HERE */
printf("\nPrinting label..\n");
/* YOUR CODE HERE */
/**
* END OF EXERCISE 0 - PRINT DATA
*/
/**
* EXERCISE 1 - FORWARD PREDICTION
*/
printf("Testing DNN initialization forward..\n");
/* YOUR CODE HERE */
/**
* END OF EXERCISE 1 - FORWARD PREDICTION
*/
/**
* EXERCISE 5 - DNN TRAINING
*/
//START_STATS();
/**
* END OF EXERCISE 5 - DNN TRAINING
*/
for (int epoch=0; epoch<EPOCHS; epoch++)
{
forward();
/**
* EXERCISE 2 - LOSS FUNCTION
*/
compute_loss();
/**
* END OF EXERCISE 2 - LOSS FUNCTION
*/
/**
* EXERCISE 3 - BACKWARD
*/
//START_STATS();
backward();
//STOP_STATS();
/**
* END OF EXERCISE 3 - BACKWARD
*/
/**
* EXERCISE 4 - UPDATE WEIGHTS
*/
//printf("Weights BEFORE the update:\n");
//print_weights();
update_weights();
//printf("Weights AFTER the update:\n");
//print_weights();
/**
* END OF EXERCISE 4 - UPDATE WEIGHTS
*/
}
/**
* EXERCISE 5 - DNN TRAINING
*/
//STOP_STATS();
/**
* END OF EXERCISE 5 - DNN TRAINING
*/
/**
* EXERCISE 3 - CHECK GRADIENTS
*/
//print_gradients();
/**
* END OF EXERCISE 3 - CHECK GRADIENTS
*/
/**
* EXERCISE 5 - DNN TRAINING & VALIDATION
*/
// Check and print updated output
//forward();
//printf("Checking updated output..\n");
//check_post_training_output();
//print_output();
/**
* END OF EXERCISE 5 - DNN TRAINING & VALIDATION
*/
}