forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_gradient_cache.py
239 lines (198 loc) Β· 10.6 KB
/
train_gradient_cache.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import random
import time
from functools import partial
import numpy as np
import paddle
import paddle.nn.functional as F
from data import convert_example, create_dataloader, read_text_pair
from gradient_cache.model import SemanticIndexCacheNeg
import paddlenlp as ppnlp
from paddlenlp.data import Pad, Tuple
from paddlenlp.datasets import load_dataset
from paddlenlp.transformers import LinearDecayWithWarmup
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--save_dir", default='./checkpoint', type=str, help="The output directory where the model checkpoints will be written.")
parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument("--output_emb_size", default=None, type=int, help="output_embedding_size.")
parser.add_argument("--learning_rate", default=1e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--epochs", default=10, type=int, help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion", default=0.0, type=float, help="Linear warmup proportion over the training process.")
parser.add_argument("--init_from_ckpt", type=str, default=None, help="The path of checkpoint to be loaded.")
parser.add_argument("--seed", type=int, default=1000, help="random seed for initialization.")
parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
parser.add_argument('--save_steps', type=int, default=10000, help="Inteval steps to save checkpoint.")
parser.add_argument("--train_set_file", type=str, required=True, help="The full path of train_set_file.")
parser.add_argument("--margin", default=0.3, type=float, help="Margin between pos_sample and neg_samples.")
parser.add_argument("--scale", default=30, type=int, help="Scale for pair-wise margin_rank_loss")
parser.add_argument("--use_amp", action="store_true", help="Whether to use AMP.")
parser.add_argument("--amp_loss_scale", default=32768, type=float, help="The value of scale_loss for fp16. This is only used for AMP training.")
parser.add_argument("--chunk_numbers", type=int, default=50, help="The number of the chunks for model")
args = parser.parse_args()
# yapf: enable
def set_seed(seed):
"""sets random seed"""
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
def do_train():
paddle.set_device(args.device)
rank = paddle.distributed.get_rank()
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
random.seed(args.seed)
np.random.seed(args.seed)
paddle.seed(args.seed)
train_ds = load_dataset(read_text_pair, data_path=args.train_set_file, lazy=False)
# If you wanna use bert/roberta pretrained model,
# pretrained_model = ppnlp.transformers.BertModel.from_pretrained('bert-base-chinese')
# pretrained_model = ppnlp.transformers.RobertaModel.from_pretrained('roberta-wwm-ext')
pretrained_model = ppnlp.transformers.ErnieModel.from_pretrained("ernie-1.0")
# If you wanna use bert/roberta pretrained model,
# tokenizer = ppnlp.transformers.BertTokenizer.from_pretrained('bert-base-chinese')
# tokenizer = ppnlp.transformers.RobertaTokenizer.from_pretrained('roberta-wwm-ext')
tokenizer = ppnlp.transformers.ErnieTokenizer.from_pretrained("ernie-1.0")
trans_func = partial(convert_example, tokenizer=tokenizer, max_seq_length=args.max_seq_length)
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), # query_input
Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"), # query_# query_segment
Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), # query_# title_input
Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"), # title_segment
): [data for data in fn(samples)]
train_data_loader = create_dataloader(
train_ds, mode="train", batch_size=args.batch_size, batchify_fn=batchify_fn, trans_fn=trans_func
)
model = SemanticIndexCacheNeg(
pretrained_model, margin=args.margin, scale=args.scale, output_emb_size=args.output_emb_size
)
if args.init_from_ckpt and os.path.isfile(args.init_from_ckpt):
state_dict = paddle.load(args.init_from_ckpt)
model.set_dict(state_dict)
print("warmup from:{}".format(args.init_from_ckpt))
model = paddle.DataParallel(model)
num_training_steps = len(train_data_loader) * args.epochs
lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps, args.warmup_proportion)
# Generate parameter names needed to perform weight decay.
# All bias and LayerNorm parameters are excluded.
decay_params = [p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"])]
optimizer = paddle.optimizer.AdamW(
learning_rate=lr_scheduler,
parameters=model.parameters(),
weight_decay=args.weight_decay,
apply_decay_param_fun=lambda x: x in decay_params,
)
if args.use_amp:
scaler = paddle.amp.GradScaler(init_loss_scaling=args.amp_loss_scale)
if args.batch_size % args.chunk_numbers == 0:
chunk_numbers = args.chunk_numbers
def split(inputs, chunk_numbers, axis=0):
if inputs.shape[0] % chunk_numbers == 0:
return paddle.split(inputs, chunk_numbers, axis=0)
else:
return paddle.split(inputs, inputs.shape[0], axis=0)
global_step = 0
tic_train = time.time()
for epoch in range(1, args.epochs + 1):
for step, batch in enumerate(train_data_loader, start=1):
chunked_x = [split(t, chunk_numbers, axis=0) for t in batch]
sub_batchs = [list(s) for s in zip(*chunked_x)]
all_reps = []
all_grads = []
all_labels = []
all_CUDA_rnd_state = []
all_query = []
all_title = []
for sub_batch in sub_batchs:
all_reps = []
all_labels = []
(
sub_query_input_ids,
sub_query_token_type_ids,
sub_title_input_ids,
sub_title_token_type_ids,
) = sub_batch
with paddle.amp.auto_cast(args.use_amp, custom_white_list=["layer_norm", "softmax", "gelu"]):
with paddle.no_grad():
sub_CUDA_rnd_state = paddle.framework.random.get_cuda_rng_state()
all_CUDA_rnd_state.append(sub_CUDA_rnd_state)
sub_cosine_sim, sub_label, query_embedding, title_embedding = model(
query_input_ids=sub_query_input_ids,
title_input_ids=sub_title_input_ids,
query_token_type_ids=sub_query_token_type_ids,
title_token_type_ids=sub_title_token_type_ids,
)
all_reps.append(sub_cosine_sim)
all_labels.append(sub_label)
all_title.append(title_embedding)
all_query.append(query_embedding)
model_reps = paddle.concat(all_reps, axis=0)
model_title = paddle.concat(all_title)
model_query = paddle.concat(all_query)
model_title = model_title.detach()
model_query = model_query.detach()
model_query.stop_gtadient = False
model_title.stop_gradient = False
model_reps.stop_gradient = False
model_label = paddle.concat(all_labels, axis=0)
loss = F.cross_entropy(input=model_reps, label=model_label)
loss.backward()
all_grads.append(model_reps.grad)
for sub_batch, CUDA_state, grad in zip(sub_batchs, all_CUDA_rnd_state, all_grads):
(
sub_query_input_ids,
sub_query_token_type_ids,
sub_title_input_ids,
sub_title_token_type_ids,
) = sub_batch
paddle.framework.random.set_cuda_rng_state(CUDA_state)
cosine_sim, _ = model(
query_input_ids=sub_query_input_ids,
title_input_ids=sub_title_input_ids,
query_token_type_ids=sub_query_token_type_ids,
title_token_type_ids=sub_title_token_type_ids,
)
surrogate = paddle.dot(cosine_sim, grad)
if args.use_amp:
scaled = scaler.scale(surrogate)
scaled.backward()
else:
surrogate.backward()
if args.use_amp:
scaler.minimize(optimizer, scaled)
else:
optimizer.step()
global_step += 1
if global_step % 10 == 0 and rank == 0:
print(
"global step %d, epoch: %d, batch: %d, loss: %.5f, speed: %.2f step/s"
% (global_step, epoch, step, loss, 10 / (time.time() - tic_train))
)
tic_train = time.time()
lr_scheduler.step()
optimizer.clear_grad()
if global_step % args.save_steps == 0 and rank == 0:
save_dir = os.path.join(args.save_dir, "model_%d" % global_step)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_param_path = os.path.join(save_dir, "model_state.pdparams")
paddle.save(model.state_dict(), save_param_path)
tokenizer.save_pretrained(save_dir)
if __name__ == "__main__":
do_train()