-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsetup.py
62 lines (60 loc) · 2.74 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from setuptools import setup, find_packages
#with open('README.rst', 'r') as fh:
# _description = fh.read()
setup(
name='interactivenet',
version='0.2.2',
author = 'Biomedical Imaging Group Rotterdam (BIGR)',
license='Apache License, Version 2.0',
author_email='[email protected]',
description='InteractiveNet, a framework for minimally interactive medical image segmentation.',
#long_description=_description,
url='https://github.com/Douwe-Spaanderman/InteractiveNet',
download_url = 'https://github.com/Douwe-Spaanderman/InteractiveNet/archive/refs/tags/v0.2.2.tar.gz',
packages=find_packages(include=['interactivenet', 'interactivenet.*']),
python_requires='>3.9.0',
install_requires=[
"SimpleITK>=2.1.1.2",
"GeodisTK>=0.1.7",
"matplotlib>=3.5.1",
"mlflow>=1.24.0",
"monai>=1.0.0,<1.3.0",
"nibabel>=3.2.2",
"numpy>=1.22.3",
"Pillow>=9.2.0",
"psutil>=5.9.0",
"pytorch_lightning>=1.5.10,<2.0.0",
"scikit_image>=0.19.2",
"scikit_learn>=1.1.1",
"scipy>=1.8.0",
"seaborn>=0.12.2",
"pyradiomics>=3.0.1"
],
setup_requires=['pytest', 'black', 'autoflake', 'setuptools'],
entry_points={
'console_scripts': [
'interactivenet_mimic_interactions=interactivenet.experiment_planning.mimic_annotations:main',
'interactivenet_generate_dataset_json=interactivenet.experiment_planning.generate_dataset_json:main',
'interactivenet_fingerprinting=interactivenet.experiment_planning.fingerprinting:main',
'interactivenet_preprocessing=interactivenet.experiment_planning.preprocessing:main',
'interactivenet_plan_and_process=interactivenet.experiment_planning.plan_and_process:main',
'interactivenet_train=interactivenet.training.run:main',
'interactivenet_postprocessing=interactivenet.training.postprocessing:main',
'interactivenet_ensemble=interactivenet.test.ensemble:main',
'interactivenet_inference=interactivenet.test.inference:main',
'interactivenet_predict=interactivenet.test.predict:main',
'interactivenet_test=interactivenet.test.run:main',
'interactivenet_deploy=interactivenet.deploy.save_model:main',
'interactivenet_available_models=interactivenet.deploy.download_model:print_available_pretrained_models',
'interactivenet_download_model=interactivenet.deploy.download_model:download_and_install_model',
]
},
keywords=[
"deep learning",
"medical image analysis",
"interactive segmentation",
"medical image segmentation",
"soft-tissue tumors",
"interactivenet"
]
)