forked from ChenJingyuan91/ACF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataset.py
150 lines (131 loc) · 5.22 KB
/
Dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
__author__ = 'jingyuan'
import numpy as np
from sets import Set
import h5py
class Dataset(object):
def __init__(self, dataset, splitter, hold_k_out, batch_size, dim):
train = []
test = []
filename = dataset
K = hold_k_out
self.dim = dim
self.batch_size = batch_size
self.num_ratings = 0
self.num_item = 0
with open(filename, "r") as f:
line = f.readline()
while line != None and line != "":
arr = line.split(splitter)
if (len(arr) < 4):
continue
user, item, time = int(arr[0]), int(arr[1]), long(arr[3])
if (len(train) <= user):
train.append([])
train[user].append([item, time])
self.num_ratings += 1
self.num_item = max(item, self.num_item)
line = f.readline()
self.num_user = len(train)
self.num_item = self.num_item + 1
# sort ratings of each user by time
def getTime(item):
return item[-1];
for u in range (len(train)):
train[u] = sorted(train[u], key = getTime)
# split into train/test
maxlen= 0
#minlen = 10000
for u in range (len(train)):
for k in range(K):
if (len(train[u]) == 0):
break
if len(train[u]) > maxlen:
maxlen = len(train[u])
#if len(train[u]) < minlen:
# minlen = len(train[u])
test.append([u, train[u][-1][0], train[u][-1][1]])
del train[u][-1] # delete the last element from train
# sort the test ratings by time
print maxlen
#print minlen
self.test = sorted(test, key = getTime)
self.epoch = (self.num_ratings/batch_size) + 1
self.train = train
self.items_of_user = self.get_items_of_user()
hf = h5py.File('data/image_data.h5','r')
print('List of arrays in this file: \n', hf.keys())
data = hf.get('res5c')
np_data = np.array(data)
print('Shape of the array dataset_1: \n', np_data.shape) #(n,2048,7,7)
num_video = np_data.shape[0]
num_dim = np_data.shape[1]
np_data = np_data.reshape(num_video,num_dim,-1)
np_data = np.transpose(np_data,(0,2,1))
self.video_features = np_data
#self.test_u = []
#self.test_i = []
#self.test_j = []
#self.test_items_u = []
#for i in xrange(len(test)):
# self.test_u.append(test[i][0])
# self.test_i.append(test[i][1])
# self.test_j.append(test[i][2])
# self.test_items_u.append(self.items_of_user[test[i][0]])
def prepare_data_for_epoch(self):
users = []
pos_items = []
neg_items = []
items_u = []
for i in xrange(self.epoch):
users_batch, pos_items_batch, neg_items_batch,items_u_batch = self.get_batch()
users.append(users_batch)
pos_items.append(pos_items_batch)
neg_items.append(neg_items_batch)
items_u.append(items_u_batch)
return (users, pos_items, neg_items,items_u)
#print("#users: %d, #items: %d, #ratings: %d" %(self.num_user, self.num_item, self.num_ratings))
def get_items_of_user(self):
items_of_user = np.zeros((self.num_user, self.num_item))
for u in xrange(len(self.train)):
#items_of_user.append(Set([]))
for i in xrange(len(self.train[u])):
item = self.train[u][i][0]
items_of_user[u][item]=1
return items_of_user
def get_videos_u(self, item_u):
feat_u = []
item_idexes = list(np.where(item_u)[0])
for index in item_idexes:
feat_u.append(self.video_features[index])
def get_batch(self):
users_b, pos_items_b, neg_items_b, items_u, mask = [], [], [], [], []
items_feature = []
max_item = 0,
for iii in xrange(self.batch_size):
# sample a user
u = np.random.randint(0, self.num_user)
# sample a positive item
i = self.train[u][np.random.randint(0, len(self.train[u]))][0]
# sample a negative item
j = np.random.randint(0, self.num_item)
#while j in self.items_of_user[u]:
while self.items_of_user[u][j]==1:
j = np.random.randint(0, self.num_item)
users_b.append(u)
pos_items_b.append(i)
neg_items_b.append(j)
item_u = self.items_of_user[u]
if max_item < len(np.where(item_u)[0]):
max_item = len(np.where(item_u)[0])
items_u.append(item_u)
items_feature.append(self.get_videos_u(item_u))
new_items_u = []
for i in xrange(len(items_u)):
mask_i = np.ones(max_item)
item_idex = list(np.where(items_u[i])[0])
while len(item_idex) < max_item:
mask_i[len(item_idex)] = 0
item_idex.append(self.num_item)
new_items_u.append(item_idex)
mask.append(mask_i)
return (users_b, pos_items_b, neg_items_b,new_items_u,mask,items_feature)