forked from YUNJU11/EV-charging-scheduling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinput.py
211 lines (159 loc) · 8.22 KB
/
input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import docplex.mp.model as cpx
from docplex.cp.model import *
import random
from cp_scaler import *
from get_distance import *
import pandas as pd
import numpy as np
class Input:
# Set and indices
def __init__(self, Job_n, Mchf_n, Mchm_n, Chg_n = 2):
self.Job_n = Job_n
self.Mchf_n = Mchf_n # 고정식 충전소 개수
self.Mchm_n = Mchm_n # 이동식 충전소 개수
self.Mch_n = Mchf_n + Mchm_n # 총 충전소 개수
self.Chg_n = Chg_n
# Parameter
def user_input(self, distance, chg, ready, mchm_list, duedate, Mmcapa=80, Cost = [0.15, 0.07], Delay_cost=15, Velo=[50,6]):
self.velo = Velo
self.Mmcapa = Mmcapa
self.cost = Cost
self.delay_cost = Delay_cost
self.distance = np.round(distance,5)
self.chg = np.round(chg,5)
li = [[0 for c in range(self.Chg_n)] for j in range(self.Job_n)]
for j in range(self.Job_n):
for c in range(self.Chg_n):
li[j][c] = self.chg[j] / self.velo[c]
self.proc = li
self.ready = np.round(ready,5)
self.mchm_list = np.round(mchm_list,5)
self.duedate = np.round(duedate,5)
def random_input(self):
# 충전 속도
self.velo = [50, 6]
# 이동형 충전소 충전용량
self.Mmcapa = 80
# 충전 비용
self.cost = [0.15,0.07]
# Delayed Cost
self.delay_cost = 15
### distance : job j와 machine i 사이의 거리 (단위: 시간)
self.distance = [[np.round(random.uniform(0.01, 0.33),5) for j in range(self.Job_n)] for i in range(self.Mchf_n+self.Mchm_n)]
### charging amount
self.chg = [np.round(random.uniform(1,90),5) for j in range(self.Job_n)]
### processing time
li = [[0 for c in range(self.Chg_n)] for j in range(self.Job_n)]
for j in range(self.Job_n):
for c in range(self.Chg_n):
li[j][c] = self.chg[j] / self.velo[c]
self.proc = li
### ready time : machine i 의 ready time (충전중인 차가 있는 경우)
self.ready = [np.round(random.uniform(0, 2),5) for i in range(self.Mch_n)]
### duedate
# self.duedate = [np.round(random.uniform(0,100),5) for j in range(self.Job_n)]
self.duedate = [2 for j in range(self.Job_n)]
### mchm_list: job 간 거리 (setup time)
self.mchm_list = [[[0 for k in range(self.Job_n + 1)] for j in range(self.Job_n + 1)] for i in
range(self.Mchm_n)]
for i in range(self.Mchm_n):
for j in range(self.Job_n + 1):
for k in range(self.Job_n + 1):
if j != k:
if j == 0:
self.mchm_list[i][j][k] = self.distance[i - self.Mchf_n][k-1]
elif k == 0:
self.mchm_list[i][j][k] = -1
elif k > j:
self.mchm_list[i][j][k] = np.round(random.uniform(1, 0.33),5)
self.mchm_list[i][k][j] = self.mchm_list[i][j][k]
def ex_input(self):
# 충전 속도
self.velo = [50, 6]
# 이동형 충전소 충전용량
self.Mmcapa = 80
# 충전 비용
self.cost = [0.15,0.07]
# Delayed Cost
self.delay_cost = 1
### distance : job j와 machine i 사이의 거리 (단위: 시간)
self.distance = [[1,2,1],[1,1,3]]
### charging amount
self.chg = [20,80,30]
### processing time
li = [[0 for c in range(self.Chg_n)] for j in range(self.Job_n)]
for j in range(self.Job_n):
for c in range(self.Chg_n):
li[j][c] = self.chg[j] / self.velo[c]
self.proc = li
### ready time : machine i 의 ready time (충전중인 차가 있는 경우)
self.ready = [0,0]
### duedate
# self.duedate = [np.round(random.uniform(0,100),5) for j in range(self.Job_n)]
self.duedate = [1,1,1]
### mchm_list: job 간 거리 (setup time)
self.mchm_list = [[[0,1,1,3],[-1,0,2,1],[-1,2,0,2],[-1,1,3,0]]]
def input_cplex(self): # input을 cplex에 필요한 형태로 바꾸기
# job (j)
self.set_J = [(i + 1) for i in range(self.Job_n)]
# machine (i)
self.set_FM = [(i + 1) for i in range(self.Mchf_n)]
self.set_MM = [(self.Mchf_n + i + 1) for i in range(self.Mchm_n)]
self.set_M = self.set_FM + self.set_MM
# charging type (c)
self.set_C = [i for i in range(self.Chg_n)]
# distance
self.d_ij = {(i, j): self.distance[i-1][j-1] for i in self.set_M for j in self.set_J}
# charging amount
self.chg_j = {(j): self.chg[j-1] for j in self.set_J}
# charging velocity
self.velo_c = {(c): self.velo[c] for c in self.set_C}
# processing time
self.p_jc = {(j,c): self.proc[j-1][c] for j in self.set_J for c in self.set_C}
# ready time
self.r_i = {i: self.ready[i-1] for i in self.set_M}
# time between job
self.t_ijk = {(i, j, k): self.mchm_list[i - self.Mchf_n - 1][j][k] for i in self.set_MM for j in self.set_J + [0] for k in self.set_J if k != j}
# due date
self.d_j = {j: self.duedate[j-1] for j in self.set_J}
def input_cp(self): # input을 cp에 필요한 형태로 바꾸기
# Scaling: 실수 -> 정수
self.distance_cp = [[Cp_scaler(self.distance[i][j]) for j in range(self.Job_n)] for i in range(self.Mchf_n+self.Mchm_n)]
self.chg_cp = [Cp_scaler(self.chg[j]) for j in range(self.Job_n)]
self.proc_cp = [[Cp_scaler(self.proc[j][c]) for c in range(self.Chg_n)] for j in range(self.Job_n)]
self.ready_cp = [Cp_scaler(self.ready[i]) for i in range(self.Mch_n)]
self.Mmcapa_cp = Cp_scaler(self.Mmcapa)
self.duedate_cp = [Cp_scaler(self.duedate[j]) for j in range(self.Job_n)]
self.cost_cp = [Cp_scaler(self.cost[c]) for c in range(self.Chg_n)]
# task type : 각 job은 모두 다른 type ( +1: dummy job(ready time) )
self.task_type = [ i for i in range( self.Job_n * self.Chg_n + 1 ) ]
# dummy job 포함 job 개수 ( 충전 타입 포함 )
self.nb_tasks = len(self.task_type)
# 급속, 완속 둘 다 있는거
self.task_dur = [self.ready_cp if i == 0 else self.proc_cp[i-1] for i in range(self.Job_n+1)]
# 이동식 충전소 set time
self.mchm_list_cp = [[[0 for k in range(self.nb_tasks)] for j in range(self.nb_tasks)] for i in
range(self.Mchm_n)]
for i in range(self.Mchm_n):
for j in range(self.nb_tasks): # job_n + 1
for k in range(self.nb_tasks):
if self.mchm_list[i][(j + self.Chg_n - 1)//self.Chg_n][(k + self.Chg_n - 1)//self.Chg_n] == -1:
self.mchm_list_cp[i][j][k] = INTERVAL_MAX
else:
self.mchm_list_cp[i][j][k] = Cp_scaler(self.mchm_list[i][(j + self.Chg_n - 1)//self.Chg_n][(k + self.Chg_n - 1)//self.Chg_n])
# 고정식 충전소의 machine 별 setup time : job j -> k
self.set_time = [[[0 for k in range(self.nb_tasks)] for j in range(self.nb_tasks)] for i in
range(self.Mchf_n)]
for i in range(self.Mchf_n):
for j in range(self.nb_tasks):
for k in range(self.nb_tasks):
if k == 0:
self.set_time[i][j][k] = INTERVAL_MAX
elif j == 0:
# 맨 처음 job은 ready time 만 고려하면 됨 -> ready - distance
self.set_time[i][j][k] = max(0, self.distance_cp[i][(k+self.Chg_n-1)//self.Chg_n-1] - self.ready_cp[i])
elif (j + self.Chg_n - 1) // self.Chg_n != (k + self.Chg_n - 1) // self.Chg_n: # 서로 다른 job 일때
self.set_time[i][j][k] = max(0, self.distance_cp[i][
(k + self.Chg_n - 1) // self.Chg_n - 1] - max(
self.distance_cp[i][(j + self.Chg_n - 1) // self.Chg_n - 1],
self.ready_cp[i]) - self.task_dur[(j + self.Chg_n - 1) // self.Chg_n][(j+1)%2])