-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patheval_post_xvector_plda_scratch.yaml
74 lines (64 loc) · 3.91 KB
/
eval_post_xvector_plda_scratch.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
root_dir: .
exp_dir: !ref <root_dir>/exp
datasets: !include:datasets_vpc2022_official_eval.yaml
eval_steps: # all metrics in this list will be computed in the evaluation. Remove entry to skip
privacy:
- asv
utility:
- asr
- gvd
anon_data_suffix: anon # suffix for dataset to signal that it is anonymized
eval_data_dir: !PLACEHOLDER # path to anonymized evaluation data in kaldi format, e.g. <eval_data_dir>/libri_test_enrolls/wav.scp etc.
privacy:
asv:
model_dir: !ref <exp_dir>/asv_anon_<privacy[asv][vec_type]>_scratch #path to existing ASV model or output for trained ASV model
vec_type: xvector # ecapa or xvector
training:
anon: true # true or false, depending on whether the training data for the ASV is anonymized or original
train_data_dir: !ref <eval_data_dir>/train-clean-360 # path to original or anonymized training data for ASV
train_config: evaluation/privacy/asv_train/hparams/train_ecapa_tdnn_small.yaml
finetuning: false # true (ft) or false (scratch)
pretrained_model: null # path to pretrained model, only used for finetuning
lr: 0.01
epochs: 10
batch_size: 256
num_utt: ALL # ALL or specific number, number of utterances per speaker
utt_selection: spk-diverse-sess # select utterances per speaker and session (spk-sess), per speaker and randomly across all sessions (spk-random), per speaker and balanced across sessions (spk-diverse-sess)
num_spk: ALL # ALL or specific number, number of speakers
retrain: false # retrain in any case (true) or skip training if model exists (false)
evaluation:
results_dir: !ref <privacy[asv][model_dir]> # path to save evaluation results
distance: plda # cosine or plda
plda: # ignored if distance is not plda
model_dir: !ref <privacy[asv][model_dir]>/plda # path to trained PLDA or output of PLDA training
train_data_dir: !ref <privacy[asv][training][train_data_dir]> # path to PLDA training data
anon: !ref <privacy[asv][training][anon]> # trained on anonymized (true) or original (false) data
utility:
asr:
libri_dir: !PLACEHOLDER # path to parent dir of original LibriSpeech for data preparation, needs the structure <libri_dir>/LibriSpeech/LICENSE.TXT etc.
model_name: asr_anon_scratch # name for ASR model
model_dir: !ref <exp_dir>/<utility[asr][model_name]> # path to existing ASR model or output for trained ASR model
training:
anon: true # true or false, depending on whether the training data for the ASR is anonymized or original
train_data_dir: !ref <eval_data_dir>/train-clean-360 # path to original or anonymized training data for ASR
num_gpus: 2 # how many GPUs to use for training (if available)
finetuning: false # true (ft) or false (scratch)
pretrained_model: null # path to pretrained model, only used for finetuning
num_utt: ALL # ALL or specific number, number of utterances per speaker
num_spk: ALL # ALL or specific number, number of speakers
nj: 4 # number of parallel jobs
retrain: false # retrain in any case (true) or skip training if model exists (false)
evaluation:
num_gpus: 4 # how many GPUs to use for evaluation (if available)
lm_dir: !ref <root_dir>/exp/asr_pre/lm_train_lm_transformer2_en_bpe5000 # path to trained language model
nj: 4 # number of parallel jobs
gvd:
num_utt: all # all or specific number, number of utterances per speaker
asv_params: # settings for ASV using for GVD evaluation
model_dir: !ref <privacy[asv][model_dir]>
vec_type: !ref <privacy[asv][vec_type]>
evaluation:
plda: !ref <privacy[asv][evaluation][plda]>
distance: !ref <privacy[asv][evaluation][distance]>
results_dir: !ref <privacy[asv][model_dir]> # path to results dir for GVD computation
recompute: false # recompute similarity matrices in any case (true) or skip if matrices exist (false)