-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patheval_gvd_both.yaml
40 lines (34 loc) · 2.08 KB
/
eval_gvd_both.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
root_dir: .
exp_dir: !ref <root_dir>/exp
datasets: !include:datasets_vpc2022_official_eval.yaml
eval_steps: # all metrics in this list will be computed in the evaluation. Remove entry to skip
utility:
- gvd
anon_data_suffix: anon # suffix for dataset to signal that it is anonymized
eval_data_dir: !PLACEHOLDER # path to anonymized evaluation data in kaldi format, e.g. <eval_data_dir>/libri_test_enrolls/wav.scp etc.
privacy:
asv:
model_dir: !ref <exp_dir>/asv_anon_<privacy[asv][vec_type]>_scratch # path to existing ASV model or output for trained ASV model
vec_type: ecapa # ecapa or xvector
evaluation:
results_dir: !ref <privacy[asv][model_dir]> # path to save evaluation results
distance: cosine # cosine or plda
plda: # ignored if distance is not plda
model_dir: null # path to trained PLDA or output of PLDA training
train_data_dir: null # path to PLDA training data
anon: !ref <privacy[asv][training][anon]> # trained on anonymized (true) or original (false) data
utility:
gvd:
num_utt: all # all or specific number, number of utterances per speaker
asv_params: # settings for ASV using for GVD evaluation
# model_dir: !ref <privacy[asv][model_dir]>, can be used if ASV model for original and anon speakers is same
orig_model_dir: !ref <exp_dir>/asv_ori_ecapa_model # path to ASV model for original speakers
anon_model_dir: !ref <privacy[asv][model_dir]> # path to ASV model for anon speakers
vec_type: !ref <privacy[asv][vec_type]>
evaluation:
plda: !ref <privacy[asv][evaluation][plda]>
distance: !ref <privacy[asv][evaluation][distance]>
orig_results_dir: !ref <utility[gvd][asv_params][orig_model_dir]> # path to dir for similarity matrices for original speakers
anon_results_dir: !ref <utility[gvd][asv_params][anon_model_dir]> # path to dir for similarity matrices for anon speakers
results_dir: !ref <exp_dir>/gvd_both # path to dir for GVD scores results
recompute: false # recompute similarity matrices in any case (true) or skip if matrices exist (false)