forked from xvandish/zoekt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathngramoffset.go
401 lines (346 loc) · 12.6 KB
/
ngramoffset.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
// Copyright 2021 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package zoekt
import (
"sort"
)
// shrinkUint32Slice copies slices with excess capacity to precisely sized ones
// to avoid wasting memory. It should be used on slices with long static durations.
func shrinkUint32Slice(a []uint32) []uint32 {
if cap(a)-len(a) < 32 {
return a
}
out := make([]uint32, len(a))
copy(out, a)
return out
}
type topOffset struct {
top, off uint32
}
// arrayNgramOffset splits ngrams into two 32-bit parts and uses binary search
// to satisfy requests. A three-level trie (over the runes of an ngram) uses 20%
// more memory than this simple two-level split.
type arrayNgramOffset struct {
// tops specify where the bottom halves of ngrams with the 32-bit top half begin.
// The offset of the next value is used to find where the bottom section ends.
tops []topOffset
// bots are bottom halves of an ngram, referenced by tops
bots []uint32
// offsets is values from simpleSection.off, simpleSection.sz is computed by subtracting
// adjacent offsets.
offsets []uint32
}
func makeArrayNgramOffset(ngrams []ngram, offsets []uint32) arrayNgramOffset {
arr := arrayNgramOffset{
bots: make([]uint32, 0, len(ngrams)),
}
arr.offsets = shrinkUint32Slice(offsets)
lastTop := uint32(0xffffffff)
lastStart := uint32(0)
for i, v := range ngrams {
curTop := uint32(v >> 32)
if curTop != lastTop {
if lastTop != 0xffffffff {
arr.tops = append(arr.tops, topOffset{lastTop, lastStart})
}
lastTop = curTop
lastStart = uint32(i)
}
arr.bots = append(arr.bots, uint32(v))
}
// add a sentinel value to make it simple to compute sizes
arr.tops = append(arr.tops, topOffset{lastTop, lastStart}, topOffset{0xffffffff, uint32(len(arr.bots))})
// shrink arr.tops to minimal size
tops := make([]topOffset, len(arr.tops))
copy(tops, arr.tops)
arr.tops = tops
return arr
}
func (a *arrayNgramOffset) Get(gram ngram) simpleSection {
if a.tops == nil {
return simpleSection{}
}
top, bot := uint32(uint64(gram)>>32), uint32(gram)
topIdx := sort.Search(len(a.tops)-1, func(i int) bool { return a.tops[i].top >= top })
if topIdx == len(a.tops)-1 || a.tops[topIdx].top != top {
return simpleSection{}
}
botsSec := a.bots[a.tops[topIdx].off:a.tops[topIdx+1].off]
botIdx := sort.Search(len(botsSec), func(i int) bool { return botsSec[i] >= bot })
if botIdx == len(botsSec) || botsSec[botIdx] != bot {
return simpleSection{}
}
idx := botIdx + int(a.tops[topIdx].off)
return simpleSection{
off: a.offsets[idx],
sz: a.offsets[idx+1] - a.offsets[idx],
}
}
func (a *arrayNgramOffset) DumpMap() map[ngram]simpleSection {
m := make(map[ngram]simpleSection, len(a.offsets)-1)
for i := 0; i < len(a.tops)-1; i++ {
top, botStart, botEnd := a.tops[i].top, a.tops[i].off, a.tops[i+1].off
botSec := a.bots[botStart:botEnd]
for j, bot := range botSec {
idx := int(botStart) + j
m[ngram(uint64(top)<<32|uint64(bot))] = simpleSection{
off: a.offsets[idx],
sz: a.offsets[idx+1] - a.offsets[idx],
}
}
}
return m
}
func (a *arrayNgramOffset) SizeBytes() int {
return 8*len(a.tops) + 4*len(a.bots) + 4*len(a.offsets)
}
// combinedNgramOffset combines an ascii ngram mapping with a unicode ngram mapping,
// falling back on unicode for unicode ngrams or ascii ngrams with excessive lengths.
type combinedNgramOffset struct {
asc *asciiNgramOffset
uni *arrayNgramOffset
}
func makeCombinedNgramOffset(ngrams []ngram, offsets []uint32) combinedNgramOffset {
// split ngrams & offsets into ascii ngrams and unicode ngrams,
// since ascii ngrams can be represented much more compactly (21b instead of 63b)
// allocate these arrays based off of rough measurements of what their typical
// sizes are-- source code is mostly ASCII with a little bit of Unicode.
// Allocating 101% of the total number of ngrams gives a little space for the
// duplicate entries used to mark section ends.
ngramsAscii := make([]ngramAscii, 0, len(ngrams)*101/100)
offsetsAscii := make([]uint32, 0, len(ngrams)*101/100)
ngramsUnicode := make([]ngram, 0, len(ngrams)*11/100)
offsetsUnicode := make([]uint32, 0, len(ngrams)*11/100)
for i, ng := range ngrams {
if ng&ngramAsciiMask == ng { // is ngram ascii-only?
ngp := ngramAsciiToPacked(ng)
if i == len(ngrams)-1 || ngrams[i+1]&ngramAsciiMask != ngrams[i+1] {
// at the end of a section we insert an extra offset with the same ngram,
// so the size of the segment can be calculated properly
ngramsAscii = append(ngramsAscii, ngp, ngp)
offsetsAscii = append(offsetsAscii, offsets[i], offsets[i+1])
} else {
ngramsAscii = append(ngramsAscii, ngp)
offsetsAscii = append(offsetsAscii, offsets[i])
}
// note: len(offsets) == len(ngrams) + 1
if offsets[i+1]-offsets[i] >= ngramAsciiMaxSectionLength {
// max-length ascii sections can't be represented properly in the ascii mapping,
// and are duplicated in the normal unicode entries.
ngramsUnicode = append(ngramsUnicode, ng, ng)
offsetsUnicode = append(offsetsUnicode, offsets[i], offsets[i+1])
}
} else {
if i == len(ngrams)-1 || ngrams[i+1]&ngramAsciiMask == ngrams[i+1] {
ngramsUnicode = append(ngramsUnicode, ng, ng)
offsetsUnicode = append(offsetsUnicode, offsets[i], offsets[i+1])
} else {
ngramsUnicode = append(ngramsUnicode, ng)
offsetsUnicode = append(offsetsUnicode, offsets[i])
}
}
}
// The last segment always has an extra trailing ngram entry that we don't need, and
// is only present for spacing and alignment. Trim it.
if len(ngramsAscii) > 0 {
ngramsAscii = ngramsAscii[:len(ngramsAscii)-1]
}
if len(ngramsUnicode) > 0 {
ngramsUnicode = ngramsUnicode[:len(ngramsUnicode)-1]
}
asc := makeAsciiNgramOffset(ngramsAscii, offsetsAscii)
uni := makeArrayNgramOffset(ngramsUnicode, offsetsUnicode)
return combinedNgramOffset{asc, &uni}
}
// Get returns a simpleSection with sz=0 if no entry, otherwise the appropriate
// offset based on the underlying ASCII or Unicode offset index.
func (a combinedNgramOffset) Get(gram ngram) simpleSection {
if a.asc == nil {
return simpleSection{}
}
var sec simpleSection
if gram&ngramAsciiMask == gram {
sec = a.asc.Get(gram)
if sec.sz == ngramAsciiMaxSectionLength {
// Fallback: this section's length was too long to store in the
// ASCII map, find it in the Unicode map.
sec = a.uni.Get(gram)
}
} else {
sec = a.uni.Get(gram)
}
return sec
}
func (a combinedNgramOffset) DumpMap() map[ngram]simpleSection {
m := a.asc.DumpMap()
for k, v := range a.uni.DumpMap() {
m[k] = v
}
return m
}
func (a combinedNgramOffset) SizeBytes() int {
return a.asc.SizeBytes() + a.uni.SizeBytes()
}
const ngramAsciiMask = 127 | 127<<21 | 127<<42
// Ascii mapping packs 3*7b chars and 11 bits of lengths, with this as the set maximum.
// We could save another ~3% of total RAM / 5% of combinedNgramOffset RAM by switching to
// a 40b packing with 19-bit lengths, but the code would be significantly uglier so it doesn't
// seem worth it.
const ngramAsciiMaxSectionLength = (1 << 11) - 1
type ngramAscii uint32
func ngramAsciiToPacked(ng ngram) ngramAscii {
return ngramAscii(uint32(ng&127) | uint32((ng>>(21-7))&(127<<7)) | uint32((ng>>(42-14))&(127<<14)))
}
func ngramAsciiPackedToNgram(ng ngramAscii) ngram {
return ngram(ng&127) | ngram(ng&(127<<7))<<(21-7) | ngram(ng&(127<<14))<<(42-14)
}
// asciiNgramOffset stores ascii trigrams packed together with short lengths,
// using offsets for a chunk of entries to limit the number of lengths that must
// be summed to compute a section's offset.
type asciiNgramOffset struct {
entries []uint32 // (chara << 25 | charb << 18 | charc << 11 | length)
chunkOffsets []uint32 // offset for entries[i*asciiNgramOffsetChunkLength]
}
// asciiNgramOffsetChunkLength specifies how many entries share one initial offset.
// It must be a power of 2, and was chosen empirically by measuring RAM usage:
// 8: 4132MB, 16: 4047MB, 32: 4006MB, 64: 3992MB, 128: 3990MB
const asciiNgramOffsetChunkLength = 32
func makeAsciiNgramOffset(ngrams []ngramAscii, offsets []uint32) *asciiNgramOffset {
ao := &asciiNgramOffset{
entries: make([]uint32, 0, len(ngrams)),
chunkOffsets: make([]uint32, 0, len(ngrams)/asciiNgramOffsetChunkLength),
}
for i, ng := range ngrams {
if len(ao.entries)%asciiNgramOffsetChunkLength == 0 {
ao.chunkOffsets = append(ao.chunkOffsets, offsets[i])
}
length := offsets[i+1] - offsets[i]
for {
if length < ngramAsciiMaxSectionLength {
ao.entries = append(ao.entries, uint32(ng)<<11|length)
break
} else {
// entries with lengths that are too long can't be represented fully in this
// map, but we repeatedly insert offsets to make the next entry's offset computable
// by summing the offsets in the preceding entries in the chunk, including
// this invalid one.
ao.entries = append(ao.entries, uint32(ng)<<11|ngramAsciiMaxSectionLength)
length -= ngramAsciiMaxSectionLength
if len(ao.entries)%asciiNgramOffsetChunkLength == 0 {
// We reached the end of the chunk, so there's no need to reach the
// offset for the next entry.
break
}
}
}
}
ao.entries = shrinkUint32Slice(ao.entries)
ao.chunkOffsets = shrinkUint32Slice(ao.chunkOffsets)
return ao
}
// Get returns a simpleSection with sz=0 if no entry, or sz=ngramAsciiMaxSectionLength
// if the length of the ngram is too large for this type and it should cascade to the next entry.
func (a *asciiNgramOffset) Get(gram ngram) simpleSection {
if gram&ngramAsciiMask != gram {
return simpleSection{}
}
g := uint32(ngramAsciiToPacked(gram) << 11)
idx := sort.Search(len(a.entries), func(i int) bool {
return a.entries[i] >= g
})
if idx == len(a.entries) || a.entries[idx]>>11 != g>>11 {
return simpleSection{}
}
length := a.entries[idx] & ngramAsciiMaxSectionLength
if length == ngramAsciiMaxSectionLength {
// this ascii ngram's section length is too large to be represented;
// repeate the Get() on the unicode map to get the correct result.
return simpleSection{
off: 0,
sz: ngramAsciiMaxSectionLength,
}
}
chunkNum := idx / asciiNgramOffsetChunkLength
chunkBase := chunkNum * asciiNgramOffsetChunkLength
offset := a.chunkOffsets[chunkNum]
for i := chunkBase; i < idx; i++ {
offset += a.entries[i] & ngramAsciiMaxSectionLength
}
return simpleSection{
off: offset,
sz: length,
}
}
func (a *asciiNgramOffset) DumpMap() map[ngram]simpleSection {
m := make(map[ngram]simpleSection, len(a.entries))
off := uint32(0)
for i, ent := range a.entries {
if i%asciiNgramOffsetChunkLength == 0 {
off = a.chunkOffsets[i/asciiNgramOffsetChunkLength]
}
length := ent & ngramAsciiMaxSectionLength
if length == ngramAsciiMaxSectionLength {
// This entry is an ascii gram with a section too long
// to be represented, so skip the entry.
continue
}
m[ngramAsciiPackedToNgram(ngramAscii(ent>>11))] = simpleSection{
off: off,
sz: length,
}
off += length
}
return m
}
func (a *asciiNgramOffset) SizeBytes() int {
return 4*len(a.entries) + 4*len(a.chunkOffsets)
}
type ngramIndex interface {
Get(gram ngram) simpleSection
DumpMap() map[ngram]simpleSection
SizeBytes() int
}
// This is a temporary type to wrap two very different implementations of the
// inverted index for the purpose of feature-flagging. We will remove this after
// we enable the b-tree permanently.
//
// Alternatively we could have adapted/extended the interface "ngramIndex".
// However, adapting the existing implementations and their tests to match the
// access pattern of map[ngram][]byte seems more cumbersome than this makeshift
// wrapper. In the end, both ngramIndex and this wrapper will be replaced by a
// concrete type.
type fileNameNgrams struct {
m map[ngram][]byte
bt btreeIndex
}
func (n fileNameNgrams) GetBlob(ng ngram) ([]byte, error) {
if n.m != nil {
return n.m[ng], nil
}
sec := n.bt.Get(ng)
return n.bt.file.Read(sec.off, sec.sz)
}
func (n fileNameNgrams) Frequency(ng ngram) uint32 {
if n.m != nil {
return uint32(len(n.m[ng]))
}
return n.bt.Get(ng).sz
}
func (n fileNameNgrams) SizeBytes() int {
if n.m != nil {
// these slices reference mmap-ed memory
return 12 * len(n.m)
}
return n.bt.SizeBytes()
}