-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_generation.py
36 lines (27 loc) · 1.26 KB
/
sample_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import hydra
import pytorch_lightning as pl
from omegaconf import DictConfig
from pytorch_lightning import LightningModule
import sys
import numpy as np
# from os.path import join as pjoin
from src.utils.render_utils import render_animation
import pyrootutils
root = pyrootutils.setup_root(__file__, dotenv=True, pythonpath=True)
@hydra.main(version_base="1.2", config_path=root / "configs", config_name="sample_generation.yaml")
def main(cfg: DictConfig):
with open("sample_description.txt", 'r') as t:
text = t.readlines()
mean = np.load('misc/mean.npy')
std = np.load('misc/std.npy')
model: LightningModule = hydra.utils.instantiate(cfg.model, nfeats=263, _recursive_=False)
model.eval()
generator = model.generator
autoencoder = model.autoencoder
generation_out = generator.generate(autoencoder, text)
generation_out.features = generation_out.features.detach().cpu() * std + mean
joints_np = generation_out.joints.cpu().numpy()[0] # only one batch
render_animation(joints_np, ffmpeg_path=cfg.ffmpeg_path, title=text[0], output=f"generations/{'_'.join(text[0].split(' '))}.mp4", dataset_name="HumanML3D")
print(f"DONE!! Animation saved at generations/{'_'.join(text[0].split(' '))}.mp4")
if __name__ == "__main__":
main()