-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathdatabase.py
124 lines (98 loc) · 4.03 KB
/
database.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from __future__ import annotations
from datetime import datetime
from pymongo import MongoClient
class Database:
def __init__(self, uri="mongodb://localhost:27017/", db_name="ImageDB"):
"""
Initialize a Database object.
Args:
uri (str): The uri of the MongoDB server. Defaults to 'mongodb://localhost:27017/'.
db_name (str): The name of the MongoDB database. Defaults to 'ImageDB'.
"""
self.client = MongoClient(uri)
self.db = self.client[db_name]
def find(self, collection, query=None):
"""
Find documents in the given collection.
Args:
collection (str): The name of the collection to search.
query (dict): The query to filter the documents by. Defaults to None.
Returns:
pymongo.cursor.Cursor: A cursor pointing to the results of the query.
"""
return self.db[collection].find(query)
def insert_one(self, collection, document):
"""
Insert a single document into the given collection.
Args:
collection (str): The name of the collection to insert into.
document (dict): The document to insert.
Returns:
pymongo.results.InsertOneResult: The result of the insertion.
"""
return self.db[collection].insert_one(document)
def find_one(self, collection, filter, projection=None):
"""
Find a single document in the given collection.
Args:
collection (str): The name of the collection to search.
filter (dict): The query to filter the documents by.
projection (dict, optional): The fields to include in the result. Defaults to None.
Returns:
dict: The document that matches the query, or None if no documents match.
"""
return self.db[collection].find_one(filter=filter, projection=projection)
def find_one_and_delete(self, collection, query):
"""
Find a single document and delete it in the given collection.
Args:
collection (str): The name of the collection to search.
query (dict): The query to filter the documents by.
Returns:
dict: The document that matches the query, or None if no documents match.
"""
return self.db[collection].find_one_and_delete(query)
def update_one(self, collection, query, update):
"""
Update a single document in the given collection.
Args:
collection (str): The name of the collection to update.
query (dict): The query to filter the documents by.
update (dict): The update to apply to the matching document.
Returns:
pymongo.results.UpdateResult: The result of the update.
"""
return self.db[collection].update_one(query, update)
# add a function for pipeline aggregation vector search
def vector_search(self, collection, embedding):
"""
Perform a vector similarity search on the given collection.
Args:
collection (str): The name of the collection to search.
embedding (list): The vector to search for.
Returns:
list: A list of documents with the closest embedding to the query vector, sorted by score.
"""
result = self.db[collection].aggregate(
[
{
"$vectorSearch": {
"index": "vector_index",
"path": "embedding",
"queryVector": embedding,
"numCandidates": 20,
"limit": 20,
},
},
{
"$project": {
"_id": 0,
"Name": 1,
"Image": 1,
"score": {"$meta": "vectorSearchScore"},
},
},
],
)
result_arr = [i for i in result]
return result_arr