-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathop_erf.cc
58 lines (51 loc) · 2.28 KB
/
op_erf.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#include <stdint.h>
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
#include "third_party/eigen3/Eigen/Core"
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, tflite::NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, tflite::NumOutputs(node), 1);
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, tflite::GetInputSafe(context, node, 0, &input));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context, tflite::GetOutputSafe(context, node, 0, &output));
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
return context->ResizeTensor(context, output, TfLiteIntArrayCopy(input->dims));
}
inline void BatchErf(const tflite::RuntimeShape& input_shape, const float* input_data,
const tflite::RuntimeShape& output_shape, float* output_data) {
//ruy::profiler::ScopeLabel label("Logistic");
auto input_map = tflite::optimized_ops::MapAsVector(input_data, input_shape);
auto output_map = tflite::optimized_ops::MapAsVector(output_data, output_shape);
output_map.array() = input_map.array().unaryExpr(Eigen::internal::scalar_erf_op<float>());
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, tflite::GetInputSafe(context, node, 0, &input));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context, tflite::GetOutputSafe(context, node, 0, &output));
switch (input->type) {
case kTfLiteFloat32: {
BatchErf( tflite::GetTensorShape(input), tflite::GetTensorData<float>(input),
tflite::GetTensorShape(output), tflite::GetTensorData<float>(output) );
break;
}
default:
TF_LITE_KERNEL_LOG(context, "Only float32 is supported, got %s.", TfLiteTypeGetName(input->type));
return kTfLiteError;
}
return kTfLiteOk;
}
TfLiteRegistration* Register_ERF() {
static TfLiteRegistration r = {
nullptr,
nullptr,
Prepare,
Eval,
};
return &r;
}