forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearning_rate.py
310 lines (280 loc) · 11.2 KB
/
learning_rate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from paddle.optimizer import lr
from .lr_scheduler import CyclicalCosineDecay, OneCycleDecay
class Linear(object):
"""
Linear learning rate decay
Args:
lr (float): The initial learning rate. It is a python float number.
epochs(int): The decay step size. It determines the decay cycle.
end_lr(float, optional): The minimum final learning rate. Default: 0.0001.
power(float, optional): Power of polynomial. Default: 1.0.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
"""
def __init__(self,
learning_rate,
epochs,
step_each_epoch,
end_lr=0.0,
power=1.0,
warmup_epoch=0,
last_epoch=-1,
**kwargs):
super(Linear, self).__init__()
self.learning_rate = learning_rate
self.epochs = epochs * step_each_epoch
self.end_lr = end_lr
self.power = power
self.last_epoch = last_epoch
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
def __call__(self):
learning_rate = lr.PolynomialDecay(
learning_rate=self.learning_rate,
decay_steps=self.epochs,
end_lr=self.end_lr,
power=self.power,
last_epoch=self.last_epoch)
if self.warmup_epoch > 0:
learning_rate = lr.LinearWarmup(
learning_rate=learning_rate,
warmup_steps=self.warmup_epoch,
start_lr=0.0,
end_lr=self.learning_rate,
last_epoch=self.last_epoch)
return learning_rate
class Cosine(object):
"""
Cosine learning rate decay
lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1)
Args:
lr(float): initial learning rate
step_each_epoch(int): steps each epoch
epochs(int): total training epochs
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
"""
def __init__(self,
learning_rate,
step_each_epoch,
epochs,
warmup_epoch=0,
last_epoch=-1,
**kwargs):
super(Cosine, self).__init__()
self.learning_rate = learning_rate
self.T_max = step_each_epoch * epochs
self.last_epoch = last_epoch
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
def __call__(self):
learning_rate = lr.CosineAnnealingDecay(
learning_rate=self.learning_rate,
T_max=self.T_max,
last_epoch=self.last_epoch)
if self.warmup_epoch > 0:
learning_rate = lr.LinearWarmup(
learning_rate=learning_rate,
warmup_steps=self.warmup_epoch,
start_lr=0.0,
end_lr=self.learning_rate,
last_epoch=self.last_epoch)
return learning_rate
class Step(object):
"""
Piecewise learning rate decay
Args:
step_each_epoch(int): steps each epoch
learning_rate (float): The initial learning rate. It is a python float number.
step_size (int): the interval to update.
gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
It should be less than 1.0. Default: 0.1.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
"""
def __init__(self,
learning_rate,
step_size,
step_each_epoch,
gamma,
warmup_epoch=0,
last_epoch=-1,
**kwargs):
super(Step, self).__init__()
self.step_size = step_each_epoch * step_size
self.learning_rate = learning_rate
self.gamma = gamma
self.last_epoch = last_epoch
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
def __call__(self):
learning_rate = lr.StepDecay(
learning_rate=self.learning_rate,
step_size=self.step_size,
gamma=self.gamma,
last_epoch=self.last_epoch)
if self.warmup_epoch > 0:
learning_rate = lr.LinearWarmup(
learning_rate=learning_rate,
warmup_steps=self.warmup_epoch,
start_lr=0.0,
end_lr=self.learning_rate,
last_epoch=self.last_epoch)
return learning_rate
class Piecewise(object):
"""
Piecewise learning rate decay
Args:
boundaries(list): A list of steps numbers. The type of element in the list is python int.
values(list): A list of learning rate values that will be picked during different epoch boundaries.
The type of element in the list is python float.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
"""
def __init__(self,
step_each_epoch,
decay_epochs,
values,
warmup_epoch=0,
last_epoch=-1,
**kwargs):
super(Piecewise, self).__init__()
self.boundaries = [step_each_epoch * e for e in decay_epochs]
self.values = values
self.last_epoch = last_epoch
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
def __call__(self):
learning_rate = lr.PiecewiseDecay(
boundaries=self.boundaries,
values=self.values,
last_epoch=self.last_epoch)
if self.warmup_epoch > 0:
learning_rate = lr.LinearWarmup(
learning_rate=learning_rate,
warmup_steps=self.warmup_epoch,
start_lr=0.0,
end_lr=self.values[0],
last_epoch=self.last_epoch)
return learning_rate
class CyclicalCosine(object):
"""
Cyclical cosine learning rate decay
Args:
learning_rate(float): initial learning rate
step_each_epoch(int): steps each epoch
epochs(int): total training epochs
cycle(int): period of the cosine learning rate
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
"""
def __init__(self,
learning_rate,
step_each_epoch,
epochs,
cycle,
warmup_epoch=0,
last_epoch=-1,
**kwargs):
super(CyclicalCosine, self).__init__()
self.learning_rate = learning_rate
self.T_max = step_each_epoch * epochs
self.last_epoch = last_epoch
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
self.cycle = round(cycle * step_each_epoch)
def __call__(self):
learning_rate = CyclicalCosineDecay(
learning_rate=self.learning_rate,
T_max=self.T_max,
cycle=self.cycle,
last_epoch=self.last_epoch)
if self.warmup_epoch > 0:
learning_rate = lr.LinearWarmup(
learning_rate=learning_rate,
warmup_steps=self.warmup_epoch,
start_lr=0.0,
end_lr=self.learning_rate,
last_epoch=self.last_epoch)
return learning_rate
class OneCycle(object):
"""
One Cycle learning rate decay
Args:
max_lr(float): Upper learning rate boundaries
epochs(int): total training epochs
step_each_epoch(int): steps each epoch
anneal_strategy(str): {‘cos’, ‘linear’} Specifies the annealing strategy: “cos” for cosine annealing, “linear” for linear annealing.
Default: ‘cos’
three_phase(bool): If True, use a third phase of the schedule to annihilate the learning rate according to ‘final_div_factor’
instead of modifying the second phase (the first two phases will be symmetrical about the step indicated by ‘pct_start’).
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
"""
def __init__(self,
max_lr,
epochs,
step_each_epoch,
anneal_strategy='cos',
three_phase=False,
warmup_epoch=0,
last_epoch=-1,
**kwargs):
super(OneCycle, self).__init__()
self.max_lr = max_lr
self.epochs = epochs
self.steps_per_epoch = step_each_epoch
self.anneal_strategy = anneal_strategy
self.three_phase = three_phase
self.last_epoch = last_epoch
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
def __call__(self):
learning_rate = OneCycleDecay(
max_lr=self.max_lr,
epochs=self.epochs,
steps_per_epoch=self.steps_per_epoch,
anneal_strategy=self.anneal_strategy,
three_phase=self.three_phase,
last_epoch=self.last_epoch)
if self.warmup_epoch > 0:
learning_rate = lr.LinearWarmup(
learning_rate=learning_rate,
warmup_steps=self.warmup_epoch,
start_lr=0.0,
end_lr=self.max_lr,
last_epoch=self.last_epoch)
return learning_rate
class Const(object):
"""
Const learning rate decay
Args:
learning_rate(float): initial learning rate
step_each_epoch(int): steps each epoch
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
"""
def __init__(self,
learning_rate,
step_each_epoch,
warmup_epoch=0,
last_epoch=-1,
**kwargs):
super(Const, self).__init__()
self.learning_rate = learning_rate
self.last_epoch = last_epoch
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
def __call__(self):
learning_rate = self.learning_rate
if self.warmup_epoch > 0:
learning_rate = lr.LinearWarmup(
learning_rate=learning_rate,
warmup_steps=self.warmup_epoch,
start_lr=0.0,
end_lr=self.learning_rate,
last_epoch=self.last_epoch)
return learning_rate