-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpset-1.tex
246 lines (191 loc) · 9.99 KB
/
pset-1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
\documentclass[letterpaper]{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{hyperref}
\usepackage{geometry}
\usepackage{nth}
% Comment the following lines to use the default Computer Modern font
% instead of the Palatino font provided by the mathpazo package.
% Remove the 'osf' bit if you don't like the old style figures.
\usepackage[T1]{fontenc}
\usepackage[sc,osf]{mathpazo}
% Set your name here
\def\name{Problem Set 1}
\geometry{
body={6.5in, 8.5in},
left=1.0in,
top=1.25in
}
% Customize page headers
\pagestyle{myheadings}
\markright{\name}
\thispagestyle{empty}
% Custom section fonts
\usepackage{sectsty}
\sectionfont{\rmfamily\mdseries\Large}
\subsectionfont{\rmfamily\mdseries\itshape\large}
% Other possible font commands include:
% \ttfamily for teletype,
% \sffamily for sans serif,
% \bfseries for bold,
% \scshape for small caps,
% \normalsize, \large, \Large, \LARGE sizes.
% Don't indent paragraphs.
\setlength\parindent{0em}
\begin{document}
{\huge \name}
% Alternatively, print name centered and bold:
%\centerline{\huge \bf \name}
\vspace{0.25in}
Dev Dabke \\
MATH 501: Introduction to Algebraic Structures I \\
September 6, 2016 \\
Prof.\ Calderbank \\
\section{Problem 1}
\label{sec:Problem1}
Using Euclid's algorithm, we see
\begin{align}
1761 & = (1) 1567 & + 194 \\
1567 & = (8) 194 & + 15 \\
194 & = (12) 15 & + 14 \\
15 & = (1) 14 & + 1 \\
14 & = (14) 1 & + 0
\end{align}
Thus, the $ \gcd(1761, 1567) = 1 $ (this makes sense since $ 1567 $ is prime).
Furthermore, if we ``bubble'' up the coefficients, we see that:
$$ (-105) 1761 + (118) 1567 = 1 = \gcd(1761, 1567) $$
\section{Problem 2}
\label{sec:Problem2}
We will prove this result by induction using the following hypothesis:
$$ r_n = s_n a + t_n b $$
First, to prove the base case $ n = 1 $, we see that $ s_1 = s_{-1} - q_1 s_0 = 1 - 0 = 1 $ and that $ t_1 = t_{-1} - q_1 t_{0} = 0 - q_1(1) = -q_1 $.
Moreover, note that by definition of Euclid's algorithm (with some rearranging), $ r_1 = a - q_1 b = r_1 = s_1 a + t_1 b $.
\\ \\
Now, assuming that our inductive hypothesis holds, we move to calculate $ r_{n + 1} $. By Euclid's algorithm, we see that:
$$ r_{n - 1} = q_n r_n + r_{n + 1} $$
Substituting for $ r_{n - 1} $ and $ r_n $, we yield:
$$ s_{n - 1} a + t_{n - 1}b = q_n (s_n a + t_n b) + r_{n + 1} $$
Rearranging:
$$ s_{n - 1}a + t_{n - 1}b - q_n s_n a - q_n t_n b = r_{n + 1} \implies (s_{n - 1} - q_n s_n)a + (t_{n - 1} - q_n t_n)b = r_{n + 1} $$
By definition of $ s_{n + 1} $ and $ t_{n + 1} $, we see that we have proved our result:
$$ s_{n + 1}a + t_{n + 1}b = r_{n } 1 $$
Finally, since this holds for all $ n \geq 1 $, by definition of Euclid's algorithm, we know that $ r_{ j + 1} = 0 $ implies $ r_j = \gcd(a, b) $. Thus, for such $ r_j $, $ r_j = s_j a + t_j b = \gcd(a, b) $.
\section{Problem 3}
\label{sec:Problem3}
We will also prove this result by induction with two hypotheses:
$$ \gcd(F_n, F_{n - 1}) = 1 $$ and that $ F_n $ is odd.
\\ \\
To begin, we see that $ F_2 = 1 $. Thus, $ \gcd(F_2, F_1) = \gcd(1, 1) = 1 $, which satisfies our hypotheses.
To prove that $ F_{n + 1} $ is odd, we quickly see that we are adding an odd number, $ F_n $, to an even number $ 2F_{n - 1} $.
\\ \\
Now that we have proven that $ F_n $ is always odd, we note that in this interesting, Fibonacci-esque sequence, it is evident by our inductive hypothesis $ \gcd(F_n, F_{n - 1}) = 1 $ that $ \gcd(F_n, 2F_{n - 1}) = 1 $ must also be true (i.e.\ $ 2 $ will never be a factor of $ F_n $).
By the relation $ \gcd(a + b, b) = \gcd(a, b) $, $ \gcd(2F_{n - 1}, F_n) = \gcd(2F_{n - 1} + F_n, F_n) = 1 $.
Substituting $ 2F_{n - 1} + F_n = F_n + 2F_{n - 1} = F_{n + 1} $, we arrive at our conclusion:
$$ \gcd(F_{n + 1}, F_n) = 1 $$
\section{Problem 4}
\label{sec:Problem4}
$$ 9^{1500} \equiv 01 \mod 100 $$
We arrive at the above conclusion by using some rules of residue classes (n.b.\ this problem is always $ \mod 100 $).
Precisely, note that $ 9^{5^{5^{5^{3^{2^2}}}}} = 9^{1500} $.
As horrible as this looks, we actually have a very elegant result in that $ 9^5 \equiv 49 $ and $ 49^5 \equiv 01 $.
Thus, $ 9^{5^{5^{5^{3^{2^2}}}}} \equiv 49^{5^{5^{3^{2^2}}}} \equiv 01^{5^{3^{2^2}}} \equiv 01 $.
\section{Problem 5}
\label{sec:Problem5}
\subsection{Part i}
\label{subs:Parti}
This statement is false.
\\ \\
With the vector space $ \mathbb{R}^2 $ and vector addition $ + $ as our group operator, we note that we can define two subgroups $ S_0 = span\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) $ and $ S_1 = span\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) $.
These subgroups inherit all of the properties of the group operator (e.g.\ associativity, well-defined inverses, etc.) and are closed under the group operator by definition of being spans of vectors.
Note that $ \begin{bmatrix} 1 \\ 1 \end{bmatrix} $ is neither in $ S_0 $ nor in $ S_0 $, and thus must be excluded from $ S_0 \cup S_1 $. However, $ \begin{bmatrix} 1 \\ 0 \end{bmatrix} $ and $ \begin{bmatrix} 0 \\ 1 \end{bmatrix} $ are in this union (by virtue of being in their respective sets).
Thus, this union is not closed under the group operator, since $ \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} $.
\subsection{Part ii}
\label{subs:Partii}
This statement is true.
\\ \\
Given subgroups $ S_0 $ and $ S_1 $, note that their intersection inherits all of the properties of a given group operator (e.g.\ associativity, well-defined inverses, etc.).
The only question is: will the intersection be closed under this operator?
Yes.
Very briefly, we see that for $ a \in S_0 \cap S_1 $ and $ b \in S_0 \cap S_1 $, which implies $ a, b \in S_0, S_1 $.
This implies that $ (a, b) \in S_0 $ (by definition of a subgroup) and $ (a, b) \in S_1 $ (symmetrically).
Thus, $ (a, b) \in S_0 \cap S_1 $, demonstrating that the intersection of two subgroups is indeed a subgroup.
\subsection{Part iii}
\label{subs:Partiii}
This statement is false.
\\ \\
For the cyclic group $ C_6 $ generated by $ \langle x | x^6 = 1 \rangle $, we see that $ xx^3 = x^4 $.
$ |x^4| = 2 $, but $ |x| = 6 $ and $ |x^3| = 3 $, so $ lcm(6, 3) = 6 \neq 2 $.
\subsection{Part iv}
\label{subs:Partiv}
This statement is false.
\\ \\
We will use the group of nonsingular 2-by-2 matrices with our group operator as matrix addition.
Take $ A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} $ with inverse $ A^{-1} = \frac{1}{2} \begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix} $ and $ B = \begin{bmatrix} 1 & 3 \\ 1 & 0 \end{bmatrix} $ with inverse = $ B^{-1} = \frac{1}{3} \begin{bmatrix} 0 & 3 \\ 1 & -1 \end{bmatrix} $.
$ {(AB)}^{-1} = \frac{1}{6} \begin{bmatrix} 3 & -3 \\ -1 & 3 \end{bmatrix} $ whereas $ A^{-1}B^{-1} = \frac{1}{6} \begin{bmatrix} 2 & -2 \\ -1 & 4 \end{bmatrix} $.
\subsection{Part v}
\label{subs:Partv}
This statement is true.
\\ \\
The map $ \phi : A \mapsto {(A^T)}^{-1} $ preserves group structure, in that
$$ \phi(AB) = \left[{(AB)}^T\right]^{-1} = {(B^T A^T)}^{-1} = A^{T^{-1}} B^{T^{-1}} = \phi(A) \phi(B) $$
\section{Problem 6}
\label{Problem6}
Using Euclid's algorithm (work done on attached scratch paper, but only the results are reproduced here):
\begin{align}
x^8 & = (x^2 + 1) (x^6 + x^4 + x^2 + x + 1) & + (x^3 + x + 1) \\
(x^6 + x^4 + x^2 + x + 1) & = (x^3 + 1) (x^3 + x + 1) & + x^2 \\
(x^3 + 1) & = (x) (x^2) & + (x + 1) \\
x^2 & = (x + 1) (x + 1) & + 1 \\
(x + 1) & = (1) (x + 1) & + 0
\end{align}
Thus, $ \gcd(x^8, x^6 + x^4 + x^2 + x + 1) = 1 $.
\\ \\
Furthermore:
$$ s = (x^5 + x^4 + x^3 + x^2), t = x^7 + x^6 + x^3 + x + 1 $$
where $ \gcd(a, b) = sa + tb $ and $ a = x^8, b = x^6 + x^4 + x^2 + x + 1 $.
\section{Problem 7}
\label{Problem7}
\subsection{Part i}
\label{Parti}
This transformation is intuitively represented by $ zxz $ which reduces to $ -x $.
\subsection{Part ii}
\label{Partii}
This transformation is intuitively represented by $ xzx $ which reduces to $ -z $.
\subsection{Part iii}
\label{Partiii}
This transformation could be thought of as a counter-clockwise rotation of $ \frac{\pi}{4} $ and then a reflection across the x-axis.
\subsection{Part iv}
\label{Partiv}
The elements in $ D_4 $ with their respective permutations are:
\begin{align}
1 & \; & (A_1)(A_2)(B_1)(B_2) \\
y = xz & \; & (A_1 A_2)(B_1)(B_2) \\
y^2 & \; & (A_1)(A_2)(B_1)(B_2) \\
y^3 &\; & (A_1 A_2)(B_1B_2) \\
z &\; & (A_1 A_2)(B_1B_2) \\
yz &\; & (A_1 A_2)(B_1B_2) \\
y^2 z & \; & (A_1)(A_2)(B_1B_2) \\
y^3 z & \; & (A_1A_2)(B_1)(B_2)
\end{align}
\section{Problem 8}
\label{Problem8}
Note that every element can be expressed as either $ y^i $ or $ y^i z $ (see the textbook).
For any element in the form $ y^i z $, we see that $ \left|y^i z\right|^2 = (y^i z)(y^i z) = y^i z y^i z $.
Now by the second relation, we can ``move'' the right-most $ z $ into the middle.
Thus $ \left|y^i z\right|^2 = y^i z z y^{-i} = y^i y^{-i} = 1 $.
We can conclude that any element of the form $ y^i z $ has order $ 2 $.
\\ \\
Furthermore, by the given relation $ z $ has order $ 2 $.
Similarly, since $ yz $ is in the form expressed above, it also has order $ 2 $.
Thus, since $ z = z $ and $ yzz = y $, we can see that the original generators $ y, z $ can be transparently transformed into $ z $ (identity) and $ yz $.
We can then conclude that $ D_N $ is generated by $ z, yz $.
\section{Problem 9}
\label{Problem9}
For an arbitrary element in the form $ y^i $, note that it commutes with any other element in the form of $ y^j $, i.e. $ y^i y^j = y^j y^i $ by associativity.
Now we will see what happens when we attempt to commute with terms in the form $ y^j z $.
$ y^i y^j z = y^j z y^{-i} $ by associativity and the second relation.
\\ \\
Multiplying $ y^n = 1 $ on the right (which does not change the value), we get $ y^j z y^{-i} y^N = y^j z y^{2k - i} $ which only equals $ y^i y^j z $ if and only if $ k = i $.
\\ \\
Note that if you start with an element in the form $ y^i z $, then the proof still holds, since an even number of $ z $s will ``disappear'' (i.e.\ when against $ y^j z $) by the first relation and an odd number (i.e.\ when against $ y^j $) will produce the same result.
\end{document}