forked from lgatto/2016-02-25-adv-programming-EMBL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunittesting.Rmd
459 lines (342 loc) · 9.13 KB
/
unittesting.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
---
title: "Unit testing"
author: "Laurent Gatto"
---
These exercises were written by Martin Morgan and Laurent Gatto for a
[Bioconductor Developer Day workshop](http://bioconductor.org/help/course-materials/2013/BioC2013/developer-day-debug/).
# Introduction
> Whenever you are templted to type something into a print statement
> or a debugger expression, write it as a test insted -- Martin Fowler
**Why unit testing?**
- Writing code to test code;
- anticipate bugs, in particular for edge cases;
- anticipate disruptive updates;
- document and test observed bugs using specific tests.
Each section provides a function that supposedly works as expected,
but quickly proves to misbehave. The exercise aims at first writing
some dedicated testing functions that will identify the problems and
then update the function so that it passes the specific tests. This
practice is called unit testing and we use the RUnit package for
this.
See the
[Unit Testing How-To](http://bioconductor.org/developers/how-to/unitTesting-guidelines/)
guide for details on unit testing using the
[`RUnit`](http://cran.r-project.org/web/packages/RUnit/index.html)
package. The
[`testthat`](http://cran.r-project.org/web/packages/testthat/) is
another package that provides unit testing infrastructure. Both
packages can conveniently be used to automate unit testing within
package testing.
# Example
## Subsetting
### Problem
This function should return the elements of `x` that are in `y`.
```{r}
## Example
isIn <- function(x, y) {
sel <- match(x, y)
y[sel]
}
## Expected
x <- sample(LETTERS, 5)
isIn(x, LETTERS)
```
But
```{r}
## Bug!
isIn(c(x, "a"), LETTERS)
```
### Solution
Write a unit test that demonstrates the issue
```{r}
## Unit test:
library("RUnit")
test_isIn <- function() {
x <- c("A", "B", "Z")
checkIdentical(x, isIn(x, LETTERS))
checkIdentical(x, isIn(c(x, "a"), LETTERS))
}
test_isIn()
```
Update the buggy function until the unit test succeeds
```{r}
## updated function
isIn <- function(x, y) {
sel <- x %in% y
x[sel]
}
test_isIn() ## the bug is fixed and monitored
```
## The `testthat` syntax
`expect_that(object_or_expression, condition)` with conditions
- equals: `expect_that(1+2,equals(3))` or `expect_equal(1+2,3)`
- gives warning: `expect_that(warning("a")`, `gives_warning())`
- is a: `expect_that(1, is_a("numeric"))` or `expect_is(1,"numeric")`
- is true: `expect_that(2 == 2, is_true())` or `expect_true(2==2)`
- matches: `expect_that("Testing is fun", matches("fun"))` or `expect_match("Testing is fun", "f.n")`
- takes less: `than expect_that(Sys.sleep(1), takes_less_than(3))`
and
```r
test_that("description", {
a <- foo()
b <- bar()
expect_equal(a, b)
})
```
## Batch unit testing
```r
library("testthat")
test_dir("./unittests/")
test_file("./unittests/test_foo.R")
```
# Exercises
## Column means
## Problem
The `col_means` function computes the means of all numeric columns in
a data frame (example from *Advanced R*, to illustrate defensive
programming).
```{r}
col_means <- function(df) {
numeric <- sapply(df, is.numeric)
numeric_cols <- df[, numeric]
data.frame(lapply(numeric_cols, mean))
}
## Expected
col_means(mtcars)
## Bugs
col_means(mtcars[, "mpg"])
col_means(mtcars[, "mpg", drop=FALSE])
col_means(mtcars[, 0])
col_means(mtcars[0, ])
col_means(as.list(mtcars))
```
## Character matching
### Problem
What are the exact matches of `x` in `y`?
```{r}
isExactIn <- function(x, y)
y[grep(x, y)]
## Expected
isExactIn("a", letters)
## Bugs
isExactIn("a", c("abc", letters))
isExactIn(c("a", "z"), c("abc", letters))
```
### Solution
```{r}
## Unit test:
library("RUnit")
test_isExactIn <- function() {
checkIdentical("a", isExactIn("a", letters))
checkIdentical("a", isExactIn("a", c("abc", letters)))
checkIdentical(c("a", "z"), isExactIn(c("a", "z"), c("abc", letters)))
}
test_isExactIn()
## updated function:
isExactIn <- function(x, y)
x[x %in% y]
test_isExactIn()
```
## If conditions with length > 1
### Problem
If `x` is greater than `y`, we want the difference of their
squares. Otherwise, we want the sum.
```{r}
ifcond <- function(x, y) {
if (x > y) {
ans <- x*x - y*y
} else {
ans <- x*x + y*y
}
ans
}
## Expected
ifcond(3, 2)
ifcond(2, 2)
ifcond(1, 2)
## Bug!
ifcond(3:1, c(2, 2, 2))
```
### Solution
```{r}
## Unit test:
library("RUnit")
test_ifcond <- function() {
checkIdentical(5, ifcond(3, 2))
checkIdentical(8, ifcond(2, 2))
checkIdentical(5, ifcond(1, 2))
checkIdentical(c(5, 8, 5), ifcond(3:1, c(2, 2, 2)))
}
test_ifcond()
## updated function:
ifcond <- function(x, y)
ifelse(x > y, x*x - y*y, x*x + y*y)
test_ifcond()
```
## Know your inputs
### Problem
Calculate the euclidean distance between a single point and a set of
other points.
```{r}
## Example
distances <- function(point, pointVec) {
x <- point[1]
y <- point[2]
xVec <- pointVec[,1]
yVec <- pointVec[,2]
sqrt((xVec - x)^2 + (yVec - y)^2)
}
## Expected
x <- rnorm(5)
y <- rnorm(5)
(m <- cbind(x, y))
(p <- m[1, ])
distances(p, m)
## Bug!
(dd <- data.frame(x, y))
(q <- dd[1, ])
distances(q, dd)
```
### Solution
```{r}
## Unit test:
library("RUnit")
test_distances <- function() {
x <- y <- c(0, 1, 2)
m <- cbind(x, y)
p <- m[1, ]
dd <- data.frame(x, y)
q <- dd[1, ]
expct <- c(0, sqrt(c(2, 8)))
checkIdentical(expct, distances(p, m))
checkIdentical(expct, distances(q, dd))
}
test_distances()
## updated function
distances <- function(point, pointVec) {
point <- as.numeric(point)
x <- point[1]
y <- point[2]
xVec <- pointVec[,1]
yVec <- pointVec[,2]
dist <- sqrt((xVec - x)^2 + (yVec - y)^2)
return(dist)
}
test_distances()
```
## Iterate on 0 length
### Problem
Calculate the square root of the absolute value of a set of numbers.
```{r}
sqrtabs <- function(x) {
v <- abs(x)
sapply(1:length(v), function(i) sqrt(v[i]))
}
## Expected
all(sqrtabs(c(-4, 0, 4)) == c(2, 0, 2))
## Bug!
sqrtabs(numeric())
```
### Solution
```{r}
## Unit test:
library(RUnit)
test_sqrtabs <- function() {
checkIdentical(c(2, 0, 2), sqrtabs(c(-4, 0, 4)))
checkIdentical(numeric(), sqrtabs(numeric()))
}
test_sqrtabs()
## updated function:
sqrtabs <- function(x) {
v <- abs(x)
sapply(seq_along(v), function(i) sqrt(v[i]))
}
test_sqrtabs() # nope!
sqrtabs <- function(x) {
v <- abs(x)
vapply(seq_along(v), function(i) sqrt(v[i]), 0)
}
test_sqrtabs() # yes!
```
# Unit testing in a package
## In a package
1. Create a directory `./mypackage/tests`.
2. Create the `testthat.R` file
```r
library("testthat")
library("mypackage")
test_check("sequences")
```
3. Create a sub-directory `./mypackage/tests/testthat` and include as
many unit test files as desired that are named with the `test_`
prefix and contain unit tests.
4. Suggest the unit testing package in your `DESCRIPTION` file:
```
Suggests: testthat
```
## Example from the `sequences` package
From the `./sequences/tests/testthat/test_sequences.R` file:
### Object creation and validity
We have a fasta file and the corresponding `DnaSeq` object.
1. Let's make sure that the `DnaSeq` instance is valid, as changes in
the class definition might have altered its validity.
2. Let's verify that `readFasta` regenerates and identical `DnaSeq`
object given the original fasta file.
```r
test_that("dnaseq validity", {
data(dnaseq)
expect_true(validObject(dnaseq))
})
test_that("readFasta", {
## loading _valid_ dnaseq
data(dnaseq)
## reading fasta sequence
f <- dir(system.file("extdata",package="sequences"),pattern="fasta",full.names=TRUE)
xx <- readFasta(f[1])
expect_true(all.equal(xx, dnaseq))
})
```
### Multiple implementations
Let's check that the R, C and C++ (via `Rcpp`) give the same result
```r
test_that("ccpp code", {
gccountr <-
function(x) tabulate(factor(strsplit(x, "")[[1]]))
x <- "AACGACTACAGCATACTAC"
expect_true(identical(gccount(x), gccountr(x)))
expect_true(identical(gccount2(x), gccountr(x)))
})
```
## Exercise
Choose any data package of your choice and write a unit test that
tests the validity of all the its data.
Tips
- To get all the data distributed with a package, use `data(package = "packageName")`
```{r datatest0, eval=FALSE}
library("pRolocdata")
data(package = "pRolocdata")
```
- To test the validity of an object, use `validObject`
```{r dataset1, echo=FALSE}
suppressPackageStartupMessages(library("pRolocdata"))
```
```{r datatest2, eval=FALSE, eval=TRUE}
data(andy2011)
validObject(andy2011)
```
- Using the `testthat` syntax, the actual test for that data set would be
```{r datatest3, eval=TRUE}
library("testthat")
expect_true(validObject(andy2011))
```
## Testing coverage in a package
The [covr](https://github.com/jimhester/covr) package:
![package coverage](./figs/covr.png)
We can use `type="all"` to examine the coverage in unit tests, examples and vignettes. This can
also be done interactively with Shiny:
```{r, eval=FALSE}
library(covr)
coverage <- package_coverage("/path/to/package/source", type="all")
shine(coverage)
```
[Coverage for all Bioconductor packages](https://codecov.io/github/Bioconductor-mirror).