forked from lgatto/2016-02-25-adv-programming-EMBL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path01-intro.Rmd
679 lines (506 loc) · 13.6 KB
/
01-intro.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
---
title: "Part I: Introduction"
author: "Laurent Gatto"
---
## Overview
- Coding style(s)
- Interactive use and programming
- Environments
- Tidy data
- Computing on the language
## Introduction
> Computers are cheap, and thinking hurts. -- Uwe Ligges
Simplicity, readability and consistency are a long way towards
robust code.
## Coding style(s)
Why?
> Good coding style is like using correct punctuation. You can manage
> without it, but it sure makes things easier to read.
-- Hadley Wickham
for **consistency** and **readability**.
## Which one?
- [Bioconductor](http://master.bioconductor.org/developers/how-to/coding-style/)
- [Hadley Wickham](http://r-pkgs.had.co.nz/style.html)
- [Google](http://google.github.io/styleguide/Rguide.xml)
- ...
## Examples
- Place spaces around all infix operators (`=`, `+`, `-`, `<-`, etc., but *not* `:`)
and after a comma (`x[i, j]`).
- Spaces before `(` and after `)`; not for function.
- Use `<-` rather than `=`.
- Limit your code to 80 characters per line
- Indentation: do not use tabs, use 2 (HW)/4 (Bioc) spaces
- Function names: use verbs
- Variable names: camelCaps (Bioc)/ `_` (HW) (but not a `.`)
- Prefix non-exported functions with a ‘.’ (Bioc).
- Class names: start with a capital
- Comments: `# ` or `## ` (from emacs)
## [`formatR`](https://cran.rstudio.com/web/packages/formatR/index.html)
```{r, eval=TRUE}
library("formatR")
tidy_source(text = "a=1+1;a # print the value
matrix ( rnorm(10),5)",
arrow = TRUE)
```
## [`BiocCheck`](http://bioconductor.org/packages/devel/bioc/html/BiocCheck.html)
```
$ R CMD BiocCheck package_1.0.0.tgz
```
```
* Checking function lengths................
The longest function is 677 lines long
The longest 5 functions are:
* Checking formatting of DESCRIPTION, NAMESPACE, man pages, R source,
and vignette source...
* CONSIDER: Shortening lines; 616 lines (11%) are > 80 characters
long.
* CONSIDER: Replacing tabs with 4 spaces; 3295 lines (60%) contain
tabs.
* CONSIDER: Indenting lines with a multiple of 4 spaces; 162 lines
(2%) are not.
```
## Style changes over time
![Style changes over time](./figs/style.png)
## Ineractive use vs programming
Moving from using R to programming R is *abstraction*, *automation*,
*generalisation*.
## Interactive use vs programming: `drop`
```{r, eval=FALSE}
head(cars)
head(cars[, 1])
head(cars[, 1, drop = FALSE])
```
## Interactive use vs programming: `sapply/lapply`
```{r, eval=FALSE}
df1 <- data.frame(x = 1:3, y = LETTERS[1:3])
sapply(df1, class)
df2 <- data.frame(x = 1:3, y = Sys.time() + 1:3)
sapply(df2, class)
```
Rather use a form where the return data structure is known...
```{r, eval=FALSE}
lapply(df1, class)
lapply(df2, class)
```
or that will break if the result is not what is exected
```{r, eval=FALSE}
vapply(df1, class, "1")
vapply(df2, class, "1")
```
## Semantics
- *pass-by-value* copy-on-modify
- *pass-by-reference*: environments, S4 Reference Classes
```{r, eval=FALSE}
x <- 1
f <- function(x) {
x <- 2
x
}
x
f(x)
x
```
## Environments
### Motivation
- Data structure that enables *scoping* (see later).
- Have reference semantics
- Useful data structure on their own
### Definition (1)
An environment associates, or *binds*, names to values in memory.
Variables in an environment are hence called *bindings*.
## Creating and populate environments
```{r, eval=FALSE}
e <- new.env()
e$a <- 1
e$b <- LETTERS[1:5]
e$c <- TRUE
e$d <- mean
```
```{r, eval=FALSE}
e$a <- e$b
e$a <- LETTERS[1:5]
```
- Objects in environments have unique names
- Objects in different environments can of course have identical names
- Objects in an environment have no order
- Environments have parents
## Definition (2)
An environment is composed of a *frame* that contains the name-object
bindings and a parent (enclosing) environment.
## Relationship between environments
Every environment has a parent (enclosing) environment
```{r, eval=FALSE}
e <- new.env()
parent.env(e)
```
Current environment
```{r, eval=FALSE}
environment()
parent.env(globalenv())
parent.env(parent.env(globalenv()))
```
Noteworthy environments
```{r, eval=FALSE}
globalenv()
emptyenv()
baseenv()
```
All parent of `R_GlobalEnv`:
```{r, eval=FALSE}
search()
as.environment("package:stats")
```
Listing objects in an environment
```{r, eval=FALSE}
ls() ## default is R_GlobalEnv
ls(envir = e)
ls(pos = 1)
```
```{r, eval=FALSE}
search()
```
Note: Every time a package is loaded with `library`, it is inserted in
the search path after the `R_GlobalEnv`.
## Accessors and setters
- In addition to `$`, one can also use `[[`, `get` and `assign`.
- To check if a name exists in an environmet (or in any or its
parents), one can use `exists`.
- Compare two environments with `identical` (not `==`).
**Question** Are `e1` and `e2` below identical?
```{r, eval=FALSE}
e1 <- new.env()
e2 <- new.env()
e1$a <- 1:10
e2$a <- e1$a
```
What about `e1` and `e3`?
```{r, eval=FALSE}
e3 <- e1
e3
e1
identical(e1, e3)
```
## Locking environments and bindings
```{r, eval=FALSE}
e <- new.env()
e$a <- 1
e$b <- 2 ## add
e$a <- 10 ## modify
```
Locking an environment stops from adding new bindings:
```{r, eval=FALSE}
lockEnvironment(e)
e$k <- 1
e$a <- 100
```
Locking bindings stops from modifying bindings with en envionment:
```{r, eval=FALSE}
lockBinding("a", e)
e$a <- 10
e$b <- 10
lockEnvironment(e, bindings = TRUE)
e$b <- 1
```
## Exercise
Reproduce the following environments and variables in R.
![envionments and variables exercise](./figs/envex.png)
## Where is a symbol defined?
`pryr::where()` implements the regular scoping rules to find in which
environment a binding is defined.
```{r, eval=FALSE}
e <- new.env()
e$foo <- 1
bar <- 2
where("foo")
where("bar")
where("foo", env = e)
where("bar", env = e)
```
## Lexical scoping
[Lexical comes from *lexical analysis* in computer science, which is
the conversion of characters (code) into a sequence of meaningful (for
the computer) tokens.]
**Definition**: Rules that define how R looks up values for a given name/symbol.
- Objects in environments have unique names
- Objects in different environments can of course have identical names.
- If a name is not found in the current environment, it is looked up
in the parent (enclosing) from.
- If it is not found in the parent (enclosing) frame, it is looked up
in the parent's parent frame, and so on...
```{r, eval=FALSE}
search()
mean <- function(x) cat("The mean is", sum(x)/length(x), "\n")
mean(1:10)
base::mean(1:10)
rm(mean)
mean(1:10)
```
## Assignments
- `<-` assigns/creates in the current environment
- `<<-` (deep assignment) never creates/updates a variable in the
current environment, but modifies an existing variable in the
current or first enclosing environment where that name is defined.
- If `<<-` does not find the name, it will create the variable in the
global environment.
```{r, eval=TRUE}
library("fortunes")
fortune(174)
```
```{r, eval=FALSE}
rm(list = ls())
x
f1 <- function() x <<- 1
f1()
x
```
```{r, eval=FALSE}
f2 <- function() x <<- 2
f2()
x
```
```{r, eval=FALSE}
f3 <- function() x <- 10
f3()
x
```
```{r, eval=FALSE}
f4 <- function(x) x <-10
f4(x)
x
```
## Using environments
Most environments are created when creating and calling
functions. They are also used in packages as *package* and *namespace*
environments.
There are several reasons to create then manually.
- Reference semantics
- Avoiding copies
- Package state
- As a hashmap for fast name lookup
## Reference semantics
```{r, eval=TRUE}
modify <- function(x) {
x$a <- 2
invisible(TRUE)
}
```
```{r, eval=FALSE}
x_l <- list(a = 1)
modify(x_l)
x_l$a
```
```{r, eval=FALSE}
x_e <- new.env()
x_e$a <- 1
modify(x_e)
x_e$a
```
Tip: when setting up environments, it is advised to set to parent
(enclosing) environment to be `emptyenv()`, to avoid accidentally
inheriting objects from somewhere else on the search path.
```{r, eval=FALSE}
e <- new.env()
e$a <- 1
e
parent.env(e)
parent.env(e) <- emptyenv()
parent.env(e)
e
```
or directly
```{r, eval=FALSE}
e <- new.env(parent.env = empty.env())
```
### Exercise
What is going to happen when we access `"x"` in the four cases below?
```{r, eval=FALSE}
x <- 1
e1 <- new.env()
get("x", envir = e1)
```
```{r, eval=FALSE}
get("x", envir = e1, inherits = FALSE)
```
```{r, eval=FALSE}
e2 <- new.env(parent = emptyenv())
get("x", envir = e2)
```
```{r, eval=FALSE}
get("x", envir = e1, inherits = FALSE)
```
## Avoiding copies
Since environments have reference semantics, they are not copied.
When passing an environment as function argument (directly, or as part
of a more complex data structure), it is **not** copied: all its
values are accessible within the function and can be persistently
modified.
```{r, eval=FALSE}
e <- new.env()
e$x <- 1
f <- function(myenv) myenv$x <- 2
f(e)
e$x
```
This is used in the `eSet` class family to store the expression data.
```{r, eval=FALSE}
library("Biobase")
getClass("eSet")
getClass("AssayData")
new("ExpressionSet")
```
## Preserving state in packages
Explicit envirionments are also useful to preserve state or define
constants-like variables in a package. One can then set getters and
setters for users to access the variables within that private
envionment.
#### Use case
Colour management in [`pRoloc`](https://github.com/lgatto/pRoloc/blob/master/R/environment.R):
```{r, eval=FALSE}
.pRolocEnv <- new.env(parent=emptyenv(), hash=TRUE)
stockcol <- c("#E41A1C", "#377EB8", "#238B45", "#FF7F00", "#FFD700", "#333333",
"#00CED1", "#A65628", "#F781BF", "#984EA3", "#9ACD32", "#B0C4DE",
"#00008A", "#8B795E", "#FDAE6B", "#66C2A5", "#276419", "#CD8C95",
"#6A51A3", "#EEAD0E", "#0000FF", "#9ACD32", "#CD6090", "#CD5B45",
"#8E0152", "#808000", "#67000D", "#3F007D", "#6BAED6", "#FC9272")
assign("stockcol", stockcol, envir = .pRolocEnv)
getStockcol <- function() get("stockcol", envir = .pRolocEnv)
setStockcol <- function(cols) {
if (is.null(cols)) {
assign("stockcol", stockcol, envir = .pRolocEnv)
} else {
assign("stockcol", cols, envir = .pRolocEnv)
}
}
```
and in plotting functions (we will see the `missing` in more details later):
```{r, eval=FALSE}
...
if (missing(col))
col <- getStockcol()
...
```
Hadley's tip: Invisibly returning the old value from
```{r, eval=FALSE}
setStockcol <- function(cols) {
prevcols <- getStockcol()
if (is.null(cols)) {
assign("stockcol", stockcol, envir = .pRolocEnv)
} else {
assign("stockcol", cols, envir = .pRolocEnv)
}
invisible(prevcols)
}
```
## Tidy data
> Hadley Wickham, Tidy Data, Vol. 59, Issue 10, Sep 2014, Journal of
> Statistical Software. http://www.jstatsoft.org/v59/i10.
Tidy datasets are easy to manipulate, model and visualize, and have a
specific structure: each variable is a column, each observation is a
row, and each type of observational unit is a table.
## Tidy tools
Tidy data also makes it easier to develop tidy tools for data
analysis, tools that both input and output tidy datasets.
- `dply::select` select columns
- `dlpy::filter` select rows
- `dplyr:mutate` create new columns
- `dpplyr:group_by` split-apply-combine
- `dlpyr:summarise` collapse each group into a single-row summary of
that group
- `magrittr::%>%` piping
## Examples
```{r, eval=FALSE}
library("dplyr")
surveys <- read.csv("http://datacarpentry.github.io/dc_zurich/data/portal_data_joined.csv")
head(surveys)
surveys %>%
filter(weight < 5) %>%
select(species_id, sex, weight)
surveys %>%
mutate(weight_kg = weight / 1000) %>%
filter(!is.na(weight)) %>%
head
surveys %>%
group_by(sex) %>%
tally()
surveys %>%
group_by(sex, species_id) %>%
summarize(mean_weight = mean(weight, na.rm = TRUE))
surveys %>%
group_by(sex, species_id) %>%
summarize(mean_weight = mean(weight, na.rm = TRUE),
min_weight = min(weight, na.rm = TRUE)) %>%
filter(!is.nan(mean_weight))
```
## Application to other data structures
> Hadley Wickham (@hadleywickham) tweeted at 8:45 pm on Fri, Feb 12,
> 2016: @mark_scheuerell @drob the importance of tidy data is not the
> specific form, but the consistency
> (https://twitter.com/hadleywickham/status/698246671629549568?s=09)
- Well-formatted and well-documented `S4` class
- `S4` as input -(function)-> `S4` as output
![MSnSet schematics](https://raw.githubusercontent.com/lgatto/pRoloc/master/vignettes/Figures/msnset.png)
## Computing on the language
#### Quoting and evaluating expressions
Quote an expression, don't evaluate it:
```{r, eval=FALSE}
quote(1:10)
quote(paste(letters, LETTERS, sep = "-"))
```
Evaluate an expression in a specific environment:
```{r, eval=FALSE}
eval(quote(1 + 1))
eval(quote(1:10))
x <- 10
eval(quote(x + 1))
e <- new.env()
e$x <- 1
eval(quote(x + 1), env = e)
eval(quote(x), list(x = 30))
dfr <- data.frame(x = 1:10, y = LETTERS[1:10])
eval(quote(sum(x)), dfr)
```
Substitute any variables bound in `env`, but don't evaluate the
expression:
```{r, eval=FALSE}
x <- 10
substitute(sqrt(x))
e <- new.env()
e$x <- 1
substitute(sqrt(x), env = e)
```
Parse, but don't evaluate an expression:
```{r, eval=FALSE}
parse(text = "1:10")
parse(file = "lineprof-example.R")
```
Turn an unevaluated expressions into character strings:
```{r, eval=FALSE}
x <- 123
deparse(substitute(x))
```
#### Characters as variables names
```{r, eval=FALSE}
foo <- "bar"
as.name(foo)
string <- "1:10"
parse(text=string)
eval(parse(text=string))
```
And with `assign` and `get`
```{r, eval=FALSE}
varName1 <- "varName2"
assign(varName1, "123")
varName1
get(varName1)
varName2
```
Using `substitute` and `deparse`
```{r, eval=FALSE}
test <- function(x) {
y <- deparse(substitute(x))
print(y)
print(x)
}
var <- c("one","two","three")
test(var)
```