Skip to content

Latest commit

 

History

History
445 lines (362 loc) · 13.3 KB

README.md

File metadata and controls

445 lines (362 loc) · 13.3 KB

Congratulations, you are a junior Data Engineer at Superstore!

We begin from creating cluster using Azure Databricks On the left hand side at the tab bar: Create -> Cluster -> enter name -> choose tech spec of cluster as per screenshot -> click Create Cluster

Image

Now we can create a Notebook On the left hand side at the tab bar: Create -> Notebook -> enter name, choose Scala and your cluster -> click Create

Image

Download the data for your warehouse

open this link in your browser https://github.com/DanyMariaLee/data_eng_bootcamp_0/blob/main/data/input_data.csv

(This is raw CSV data of sales stats that we will be using in this class)

Right click on window "save as..." and save it as input_data.csv on your computer. We will use it in a minute. Image

Now let's ingest data!

Left tab -> Workspaces -> choose your workspace Click file -> Upload data

Image

then drag and drop our input_data.csv

Image

And here click "copy" to get the code snippet to read the file

Image

Look at the code snippet to read data - it contains email. Please note, in the following code everywhere you should replace my email with your own, because this is the address of the file created under your user account. You can't access mine, and no one can access yours.

Paste copied code into the console Image

Before we run it let's look at the line of code and learn what it actually does

val df1 = spark.read.format("csv").load("dbfs:/FileStore/shared_uploads/[email protected]/input_data.csv")
  • spark - is Spark Session
  • read - reads the data
  • format - you provide info about the format of the data you are reading (csv, parquet)
  • load parameter has to contain full path to the data
  • df1 is a DataFrame

A Spark DataFrame is an integrated data structure with an easy-to-use API for simplifying distributed big data processing.

Now we going to look at the data. Call functions show on your dataframe

df1.show

Image

If you look carefully you'll notice, that the column names are messed up: _c0, _c1...

Let's fix it by adding options to our data reading function

.option("header", "true")

so the result code snippet will be

val df1 = spark.read.format("csv").option("header", "true").load("dbfs:/FileStore/shared_uploads/YOUR_EMAIL/input_data.csv")
df1.show

Let's execute it and see

Image

Now we can find out how many row of data do we have

df1.count

Before executing the code please comment out the df1.show line, we don't need it right now.

this screenshot is too wide and will open in new window

Now we can see there are transactions from different Product lines, can we find out in how many f them we have in our stores?

df1.select("Product line").distinct.show

response would be

+--------------------+
|        Product line|
+--------------------+
|  Home and lifestyle|
| Fashion accessories|
|   Health and beauty|
|Electronic access...|
|  Food and beverages|
|   Sports and travel|
+--------------------+

To have a clear idea of what columns we have we can call function

df1.printSchema

and the response would be

root
 |-- CustomerID: string (nullable = true)
 |-- Product line: string (nullable = true)
 |-- Unit price: string (nullable = true)
 |-- Quantity: string (nullable = true)
 |-- Tax 5%: string (nullable = true)
 |-- Total: string (nullable = true)
 |-- Date: string (nullable = true)
 |-- Time: string (nullable = true)
 |-- Payment: string (nullable = true)
 |-- cogs: string (nullable = true)
 |-- gross margin percentage: string (nullable = true)
 |-- gross income: string (nullable = true)
 |-- Rating: string (nullable = true)

df1: org.apache.spark.sql.DataFrame = [CustomerID: string, Product line: string ... 11 more fields]

Now that we can calculate distinct values in any column let's find out how many unique customers we have

df1.select("CustomerID").distinct.count

and the response would be

res15: Long = 99

What is total $ each customer spend with us?

df1.groupBy(“CustomerID").sum("Total").show

and the response would be

AnalysisException: "Total" is not a numeric column. Aggregation function can only be applied on a numeric column.

This is happening because our schema has type string on column Total. We can fix that and calculate total spend using two options:

// Use column we created with correct type - column t

df1.withColumn("t", col("Total").cast("integer")).groupBy("CustomerID").sum("t").show

// OR drop old column and rename new one to Total

df1.withColumn("t", col("Total").cast("integer")).drop("Total").withColumnRenamed("t", "Total").groupBy("CustomerID").sum("Total").show

result will be the same

+-----------+------+
| CustomerID|sum(t)|
+-----------+------+
|756-01-7507|  3456|
|829-34-3910|  3344|
|299-46-1805|  4175|
|617-15-4209|  2888|
|865-92-6136|  2538|
|853-23-2453|  3079|
|225-32-0908|  4110|
|232-11-3025|  5203|
|120-06-4233|  3968|
|319-50-3348|  2807|
|370-41-7321|  2602|
|382-03-4532|  2615|
|252-56-2699|  4290|
|354-25-5821|  3769|
|227-03-5010|  2686|
|315-22-5665|  4324|
|393-65-2792|  2951|
|838-78-4295|  3779|
|669-54-1719|  1652|
|692-92-5582|  2482|
+-----------+------+
only showing top 20 rows

Can you find customer who spend more than anyone else?

This can be done in two steps:

  1. we will use function from previous step to create new aggregated dataset
  2. looking at the output of previous calculation we can see that the result of the sum function has name sum(t) or sum(Total) depending on which way you decided to go - we should rename that column for readability and future use
  3. we can use order function to answer our question, for us to have the maximum value on the top of the pile we need to use descending ordering
// this is adding all the function from the package functions including desc
// if you want to only import the ones you use right now type import org.apache.spark.sql.functions.{col, desc}
import org.apache.spark.sql.functions._ 

df1.withColumn("t", col("Total").cast("integer")).drop("Total").withColumnRenamed("t", "Total").groupBy("CustomerID")
.sum("Total").withColumnRenamed("sum(Total)", "sum_total").orderBy(desc("sum_total")).show

Can we find what are the least popular Product line for this spender?

// lets select the CustomerID for this spender
val maxSpenderId = df1.withColumn("t", col("Total").cast("integer"))
.drop("Total")
.withColumnRenamed("t", "Total")
.groupBy("CustomerID")
.sum("Total")
.withColumnRenamed("sum(Total)", "sum_total")
.orderBy(desc("sum_total"))
.select("CustomerID")
.as[String]
.collect
.head 
// using .head in the end is not the best way to do it, if you do not have a result value this function will fail.
// as an exercise - find a better way to do it

and the result would be

res5: String = 750-67-8428

Now we can select a set of data related only to this customer

df1
.filter(df1("CustomerID") === "750-67-8428")
.withColumn("t", col("Total").cast("integer"))
.drop("Total")
.withColumnRenamed("t", "Total")
.groupBy("Product line")
.sum("Total")
.withColumnRenamed("sum(Total)", "sum_total")
.orderBy(desc("sum_total"))
.select("Product line", "sum_total")
.show

and the result would be something like that

+——————————+---------+---------+ 
|        Product line|sum_total|
+--------------------+---------+
|  Home and lifestyle|     2140|
|  Food and beverages|     1570|
|   Health and beauty|     1077|
|Electronic access...|      657|
|   Sports and travel|      432|
| Fashion accessories|      193|
+--------------------+---------+

Useful hint: before reading the solution try to put together the code yourself

Can you find customer who spends more than anyone else between 2 and 5 PM?

// first we need to filter the data where Time column is between 2 and 5 PM
// lets add column that will contain only the hour of transaction
import org.apache.spark.sql.functions._ 


df1
.select(col("*"), substring(col("Time"), 1, 2).as("hour").cast("integer"))
.filter(col("hour") >= 14 && col("hour") <= 17)
.withColumn("t", col("Total").cast("decimal"))
.drop("Total")
.withColumnRenamed("t", "Total")
.groupBy("CustomerID")
.sum("Total")
.withColumnRenamed("sum(Total)", "sum_total")
.orderBy(desc("sum_total"))
.show

and the result would be

+-----------+---------+
| CustomerID|sum_total|
+-----------+---------+
|355-53-5943|     3071|
|732-94-0499|     3003|
|871-39-9221|     2612|
|145-94-9061|     2552|
|565-80-5980|     2272|
|574-22-5561|     2265|
|333-73-7901|     2133|
|870-72-4431|     2060|
|347-34-2234|     2040|
|730-50-9884|     1955|
|750-67-8428|     1923|
|727-46-3608|     1871|
|756-01-7507|     1848|
|371-85-5789|     1831|

Now let's import another data file from here https://github.com/DanyMariaLee/data_eng_bootcamp_0/blob/main/data/reference_data.csv using the beginning of this tutorial. Save it as reference_data.csv

Let's read this data. Hint: after drag and drop of the file into our notebook, the line generated by notebook will name our val df1 again, we need to rename it into df2 to avoid the confusion.

val df2 = spark.read.format("csv").option("header", "true").load("dbfs:/FileStore/shared_uploads/YOUR_EMAIL/reference_data.csv")
df2.show

the result would be

+-----------+--------+-----+------+---+
|  person_id|postcode|state|gender|age|
+-----------+--------+-----+------+---+
|750-67-8428|    2000|  NSW|     F| 19|
|226-31-3081|    2000|  NSW|     F| 22|
|631-41-3108|    2000|  NSW|     M| 32|
|123-19-1176|    2000|   WA|     M| 32|
|373-73-7910|    2000|   WA|     M| 32|
|699-14-3026|    2000|   WA|     M| 32|
|355-53-5943|    2000|   WA|     M| 32|
|315-22-5665|    2000|  NSW|     M| 32|
|665-32-9167|    2000|  NSW|     M| 22|
|692-92-5582|    2000|  NSW|     M| 22|
|351-62-0822|    2000|  NSW|     M| 22|

In what state leaves a person who spends the least between 1 and 2PM?

// first we need to reuse previous function to filter data between 1 and 2 PM
import org.apache.spark.sql.functions._ 

df1
.select(col("*"), substring(col("Time"), 1, 2).as("hour").cast("integer"))
.filter(col("hour") >= 13 && col("hour") <= 14)
.withColumn("t", col("Total").cast("decimal"))
.drop("Total")
.withColumnRenamed("t", "Total")
.groupBy("CustomerID")
.sum("Total")
.withColumnRenamed("sum(Total)", "sum_total")
.orderBy("sum_total")
.select("CustomerId")
.as[String]
.collect
.head

and the result would be

minSpender: String = 132-32-9879

Now we can fin that customer in reference dataset and select the state column

// check out the schema first
df2.printSchema

and the result would be

root
 |-- person_id: string (nullable = true)
 |-- postcode: string (nullable = true)
 |-- state: string (nullable = true)
 |-- gender: string (nullable = true)
 |-- age: string (nullable = true)

and finally

df2.filter(col("person_id") === "132-32-9879").select("state").show

Filter customers that payed more than 1000$ with cash in total spendings?

df1.filter(col("Payment") === "Cash")
.withColumn("t", col("Total").cast("integer"))
.drop("Total")
.withColumnRenamed("t", "Total")
.groupBy("CustomerID")
.sum("Total")
.withColumnRenamed("sum(Total)", "sum_total")
.filter(col("sum_total") >= 1000)
.join(df2, df1("CustomerID") === df2("person_id"))
.drop("CustomerID")
.show

and the result would be like this

+---------+-----------+--------+-----+------+---+
|sum_total|  person_id|postcode|state|gender|age|
+---------+-----------+--------+-----+------+---+
|     1293|756-01-7507|     822|   NT|     F| 52|
|     1590|829-34-3910|    2000|  NSW|     F| 42|
|     1365|299-46-1805|    2000|  NSW|     F| 19|
|     1165|853-23-2453|    2000|   WA|     M| 32|
|     2801|232-11-3025|    2000|  NSW|     M| 22|
|     2456|120-06-4233|     822|   NT|     F| 42|
|     1301|382-03-4532|    2000|  NSW|     M| 22|
|     1610|252-56-2699|    2000|  NSW|     F| 42|
|     2582|354-25-5821|    2000|  NSW|     F| 42|
|     1885|692-92-5582|    2000|  NSW|     M| 22|
|     1752|732-94-0499|    2000|  NSW|     F| 22|
|     1612|228-96-1411|    2000|  NSW|     F| 42|
|     1579|640-49-2076|    2000|  NSW|     M| 32|
|     2678|365-64-0515|    2000|  NSW|     F| 42|
|     1473|280-35-5823|    2000|  NSW|     M| 22|
|     1094|329-62-1586|     822|   NT|     F| 22|
|     1051|574-22-5561|     822|   NT|     F| 52|
|     1031|847-38-7188|     822|   NT|     M| 52|
|     1901|699-14-3026|    2000|   WA|     M| 32|
|     1614|777-82-7220|    2000|  NSW|     M| 22|
+---------+-----------+--------+-----+------+---+
only showing top 20 rows

Filter customers who are from NSW, spend less than 500$ with Credit card and are in the age box [25-35] ? *this is the question from Christmas, the answer below is for you to check your solution result.

answer is single person

+---------+-----------+--------+-----+------+---+
|sum_total|  person_id|postcode|state|gender|age|
+---------+-----------+--------+-----+------+---+
|      287|873-51-0671|    2000|  NSW|     M| 32|
+---------+-----------+--------+-----+------+---+