-
Notifications
You must be signed in to change notification settings - Fork 1
/
esp32_updated.py
96 lines (79 loc) · 3.03 KB
/
esp32_updated.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# @Author: Swarup Tripathy
# No text to speech conversion present here
import cv2
import numpy as np
import time
import urllib.request
frame = None
key = None
url='http://192.168.100.5/capture' # update your url from esp32
###################### Load Yolo #####################################
net = cv2.dnn.readNet(r"C:\Users\BIG BANG\Documents\Downloads\yolo_realtime_detection_cpu\weights\yolov3-tiny.weights",
r"C:\Users\BIG BANG\Documents\Downloads\yolo_realtime_detection_cpu\cfg\yolov3-tiny.cfg") # change it to your directory
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
############################## Loading image ########################
# cap = cv2.VideoCapture(0)
starting_time = time.time()
frame_id = 0
font = cv2.FONT_HERSHEY_PLAIN
starting_time = time.time()
# frameid = 0
while True:
print("Begin")
imgResp=urllib.request.urlopen(url,timeout=5)
print("url is open")
imgNp=np.array(bytearray(imgResp.read()),dtype=np.uint8)
print("we read the data")
frame=cv2.imdecode(imgNp,-1)
print(frame)
# , frame = cap.read()
frame_id += 1
height, width, channels = frame.shape
# Detecting objects
blob = cv2.dnn.blobFromImage(frame, 0.00392, (320, 320), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# Showing information on the screen
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.2:
# Object detected
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
confidence = confidences[i]
color = colors[class_ids[i]]
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
cv2.putText(frame, label + " " + str(round(confidence, 2)), (x, y + 30), font, 3, color, 3)
elapsed_time = time.time() - starting_time
fps = frame_id / elapsed_time
cv2.putText(frame, "FPS: " + str(round(fps, 2)), (10, 50), font, 4, (0, 0, 0), 3)
cv2.imshow("Image", frame)
key = cv2.waitKey(1)
if key == 27:
break
cap.release()
cv2.destroyAllWindows()