-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcliff_attractor.py
132 lines (104 loc) · 3.87 KB
/
cliff_attractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import numpy as np, pandas as pd, datashader as ds
from datashader import transfer_functions as tf
from datashader.colors import inferno, viridis
from numba import jit
from math import sin, cos, sqrt, fabs
import numpy.random
from PIL import Image
import xarray as xr
from colorcet import palette
palette["viridis"]=viridis
palette["inferno"]=inferno
@jit(nopython=True)
def Clifford(x, y, a, b, c, d, *o):
return np.sin(a * y) + c * np.cos(a * x), np.sin(b * x) + d * np.cos(b * y)
n=10000000
@jit(nopython=True)
def trajectory_coords(fn, x0, y0, a, b=0, c=0, d=0, e=0, f=0, n=n):
x, y = np.zeros(n), np.zeros(n)
x[0], y[0] = x0, y0
for i in np.arange(n-1):
x[i+1], y[i+1] = fn(x[i], y[i], a, b, c, d, e, f)
return x,y
def trajectory(fn, x0, y0, a, b=0, c=0, d=0, e=0, f=0, n=n):
x, y = trajectory_coords(fn, x0, y0, a, b, c, d, e, f, n)
return pd.DataFrame(dict(x=x,y=y))
#TEST
# df = trajectory(Clifford, 0, 0, -1.3, -1.3, -1.8, -1.9)
#
#
# cvs = ds.Canvas(plot_width = 200, plot_height = 200)
# agg = cvs.points(df, 'x', 'y')
# #print(agg.values[190:195,190:195],"\n")
# ds.transfer_functions.Image.border=0
# img = tf.shade(agg, cmap = viridis).to_pil()
#
# #img = Image.new(mode = "RGB", size = (300,300))
# img.save('img.png')
def init_plot(fn, vals, n=n, cmap=viridis, label=True):
"""Return a Datashader image by collecting `n` trajectory points for the given attractor `fn`"""
lab = ("{}, "*(len(vals)-1)+" {}").format(*vals) if label else None
df = trajectory(fn, *vals, n=n)
cvs = ds.Canvas(plot_width = 500, plot_height = 500)
agg = cvs.points(df, 'x', 'y')
return agg
#finds some nice inital conditions thats it
def gen_random():
im = [0]
empty_min=249200
empty = 250001
func = Clifford#Symmetric_Icon#De_Jong#Svensson
#how intresting/colorful #1e12 lower limit
while empty > empty_min:#np.array(im).sum() < 1e12:
rvals=np.c_[np.zeros((1,2)), numpy.random.random((1,6))*4-2]
#rvals = np.c_[np.ones((num,2))*0.01, numpy.random.random((num,6))*4-2]
#print(rvals[0])
vals = list(rvals[0])
agg = init_plot(func, rvals[0], n=2000)
#print('loop', np.count_nonzero(np.array(agg.values)==0))
empty = np.count_nonzero(np.array(agg.values)==0)
#con = np.count_nonzero(im==0)
#print(np.array(im).max())
return rvals[0]
#take inital conditions and makes a nice agg
def make_detailed(vals, n=n, cmap=viridis, label=True):
"""Return a Datashader image by collecting `n` trajectory points for the given attractor `fn`"""
imgs = []
m = 1000000
vals[0] = 0
vals[1] = 0
cvs = ds.Canvas(plot_width = 500, plot_height = 500)
agg_sum = 0
#for i in np.geomspace(200, m, 100).astype(int):
for i in range(100):
#print(i)
lab = ("{}, "*(len(vals)-1)+" {}"+' n:'+str((1+i)*m)).format(*vals) if label else None
df = trajectory(Clifford, *vals, n=m)
vals[0] = df.iloc[m-1].x
vals[1] = df.iloc[m-1].y
agg = cvs.points(df, 'x', 'y')
agg_sum = agg.values + agg_sum
return xr.DataArray(agg_sum)#imgs
def make_pretty(color, vals, agg):
if vals == '': #or agg == None
vals = gen_random()
agg = make_detailed(Clifford, vals)
if color == '':
color = 'fire'
print('vals:', vals)
lab = ("{}, "*(len(vals)-1)+" {}").format(*vals) if vals else None
img = tf.shade(xr.DataArray(agg), cmap=palette[color], name=lab)
img = tf.set_background(img,'black')
return img
#vals = gen_random()
#im, a, df = init_plot(Clifford, vals, n=10000000)
#im = im.to_pil()
#im.save('im.png')
#plot(func, vals=[["kbc"]+list(rvals[i]) for i in range(len(rvals))], label=True) #NOTEBOOK TO FILE
#color_map = palette['inferno']
#img = tf.shade(a,cmap=color_map).to_pil()
#img.save('img.png')
# img = tf.shade(agg, cmap = viridis).to_pil()
#
# #img = Image.new(mode = "RGB", size = (300,300))
# img.save('img.png')