-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearning.py
190 lines (159 loc) · 6.23 KB
/
learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import matplotlib
import pygame
import time
import sys
import numpy as np
import matplotlib.pyplot as plt
from Agent import Agent
from Environment import Env, Matrix
#colours
ORANGE = (255, 165, 0)
GREEN = (0, 150, 0)
WHITE = (255,255,255)
RED = (255, 0, 0)
BLACK = (0,0,0)
def show_stats(cheese_eaten, mouse_caugth):
pygame.draw.rect(display, BLACK, [0, 800, 800, 5])
font = pygame.font.SysFont(None, 40)
text1 = font.render('Totale formaggio mangiato: '+str(cheese_eaten), True, GREEN)
text2 = font.render('Totale topo catturato: '+str(mouse_caugth), True, RED)
display.blit(text1,(50, 810))
display.blit(text2,(50, 855))
def draw_stats_pannel(color, x, y, width, height):
pygame.draw.rect(display, color, [x * width, y * height, width, height], 10)
pygame.display.update()
#time.sleep(2)
#-------------------------------------------------------------------------------------------------------------------------------------------------#
# Pygame
displayWidth = 800
displayHeight = 900
pygame.init()
pygame.display.set_caption('Tom & Jerry AI Agents')
display = pygame.display.set_mode((displayWidth, displayHeight))
clock = pygame.time.Clock()
# env, grid and agent definitions
cat_mode = 'knowCheese' # 'knowCheese' or 'classico'
map_mode = 'walls' # 'walls' or ''
if map_mode == 'walls':
pct_obstacles = 0.04
else:
pct_obstacles = 0.07
map = Matrix(rows=10, columns=10, max_pct_obstacles=pct_obstacles)
env = Env(display, map, cat_mode, map_mode)
mouse = Agent(env, possibleActions=4, alpha = 0.1, gamma = 0.85)
cat = Agent(env, possibleActions=4, alpha = 0.1, gamma = 0.85)
# Qlearning params
epsilon, eps_decay, eps_min = 1.0, 0.99992, 0.05
# Train epoch
num_episodes = 50000
# Stas for plot
info_plot = True
total_rewards_mouse = np.zeros(num_episodes)
total_rewards_cat = np.zeros(num_episodes)
total_toccateMuro_mouse = np.zeros(num_episodes)
total_toccateMuro_cat = np.zeros(num_episodes)
total_toccate_ostacolo_mouse = np.zeros(num_episodes)
total_toccate_ostacolo_cat = np.zeros(num_episodes)
total_mouse_caught = np.zeros(num_episodes)
total_cheese_eaten = np.zeros(num_episodes)
mouse_caught = 0
cheese_eaten = 0
for i_episode in range(1, num_episodes+1):
env.set_obstacles(env.load_obstacles(map.OBSTACLES,pct_obstacles)) # Load different obstacles at each epoch
if i_episode % 100 == 0:
print("\rEpisode {}/{}".format(i_episode, num_episodes), end="")
print()
#print("Muri toccati: {}, Ostacoli toccati: {}".format(toccatemuro,toccate_ostacolo))
#toccatemuro = 0
sys.stdout.flush()
epsilon = max(epsilon*eps_decay, eps_min)
state = env.reset()
action_mouse = mouse.get_action(state['mouse'], epsilon)
action_cat = cat.get_action(state['cat'], epsilon)
ep_rewards_mouse = 0
ep_rewards_cat = 0
ep_toccateMuro_mouse = 0
ep_toccateMuro_cat = 0
ep_toccate_ostacolo_mouse = 0
ep_toccate_ostacolo_cat = 0
# Render the environment
env.render(i_episode)
while True:
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
quit()
next_state, reward, done, info, toccate_muro_mouse, toccate_muro_cat, toccate_ostacolo_mouse, toccate_ostacolo_cat = env.step(action_mouse, action_cat)
ep_rewards_mouse += reward['mouse']
ep_rewards_cat += reward['cat']
ep_toccateMuro_mouse += toccate_muro_mouse
ep_toccateMuro_cat += toccate_muro_cat
ep_toccate_ostacolo_mouse += toccate_ostacolo_mouse
ep_toccate_ostacolo_cat += toccate_ostacolo_cat
mouse.Q_learn(state['mouse'], action_mouse, reward['mouse'], next_state['mouse'])
cat.Q_learn(state['cat'], action_cat, reward['cat'], next_state['cat'])
# Render the environment
display.fill(WHITE)
env.render(i_episode)
show_stats(cheese_eaten, mouse_caught)
pygame.display.update()
clock.tick(99999999999999)
if done:
if info['cheese_eaten']:
cheese_eaten += 1
draw_stats_pannel(GREEN, info['x'], info['y'], info['width'], info['height'])
if info['mouse_caught']:
mouse_caught += 1
draw_stats_pannel(RED, info['x'], info['y'], info['width'], info['height'])
# Break episode
break
# Update state and action
state = next_state
action_mouse = mouse.get_action(state['mouse'], epsilon)
action_cat = cat.get_action(state['cat'], epsilon)
total_mouse_caught[i_episode-1] = mouse_caught
total_cheese_eaten[i_episode-1] = cheese_eaten
total_rewards_mouse[i_episode-1] = ep_rewards_mouse
total_rewards_cat[i_episode-1] = ep_rewards_cat
total_toccateMuro_mouse[i_episode-1] = ep_toccateMuro_mouse
total_toccateMuro_cat[i_episode-1] = ep_toccateMuro_cat
total_toccate_ostacolo_mouse[i_episode-1] = ep_toccate_ostacolo_mouse
total_toccate_ostacolo_cat[i_episode-1] = ep_toccate_ostacolo_cat
dir = 'policies/gattoIntelligente/' + cat_mode + '/'
if map_mode == 'walls':
dir += 'walls/'
# Plot stats
if info_plot:
plt.plot(total_rewards_mouse)
plt.title('Reward')
plt.savefig(dir+'reward_mouse.png')
plt.show()
plt.plot(total_rewards_cat)
plt.title('Reward')
plt.savefig(dir+'reward_cat.png')
plt.show()
plt.plot(total_toccate_ostacolo_mouse)
plt.savefig(dir+'toccateOstacolo_mouse.png')
plt.show()
plt.plot(total_toccate_ostacolo_cat)
plt.savefig(dir+'toccateOstacolo_cat.png')
plt.show()
plt.plot(total_toccateMuro_mouse)
plt.savefig(dir+'toccateMuro_mouse.png')
plt.show()
plt.plot(total_toccateMuro_cat)
plt.savefig(dir+'toccateMuro_cat.png')
plt.show()
plt.title('Mouse vs cat')
plt.plot(total_mouse_caught, label='topo catturato', color='orange')
plt.plot(total_cheese_eaten, label='formaggio mangiato', color='green')
plt.legend()
plt.savefig(dir+'mouse_vs_cat.png')
plt.show()
print(mouse_caught)
print(cheese_eaten)
cat.set_policy(saveQtable=True, dir=dir)
mouse.set_policy(saveQtable=True, dir=dir)
# Save the policy
cat.save_policy(dir, 'cat', savePolicytable=True)
mouse.save_policy(dir, 'mouse', savePolicytable=True)