-
Notifications
You must be signed in to change notification settings - Fork 92
/
Copy pathdemo_graph_sage_func.py
169 lines (123 loc) · 5.13 KB
/
demo_graph_sage_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# coding=utf-8
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import tf_geometric as tfg
from tf_geometric.datasets.ppi import PPIDataset
from tf_geometric.utils.graph_utils import RandomNeighborSampler
import tensorflow as tf
from tensorflow import keras
import numpy as np
from sklearn.metrics import f1_score
from tqdm import tqdm
train_graphs, valid_graphs, test_graphs = PPIDataset().load_data()
# traverse all graphs
for graph in train_graphs + valid_graphs + test_graphs:
neighbor_sampler = RandomNeighborSampler(graph.edge_index)
graph.cache["sampler"] = neighbor_sampler
num_classes = train_graphs[0].y.shape[1]
num_features = train_graphs[0].x.shape[-1]
graph_sages = [
# tfg.layers.MaxPoolGraphSage(units=256, activation=tf.nn.relu, concat=True),
# tfg.layers.MaxPoolGraphSage(units=256, activation=tf.nn.relu, concat=True)
# tfg.layers.MeanPoolGraphSage(units=256, activation=tf.nn.relu, concat=True),
# tfg.layers.MeanPoolGraphSage(units=256, activation=tf.nn.relu, concat=True)
tfg.layers.MeanGraphSage(units=256, activation=tf.nn.relu, concat=True),
tfg.layers.MeanGraphSage(units=256, activation=tf.nn.relu, concat=True)
# tfg.layers.SumGraphSage(units=256, activation=tf.nn.relu, concat=True),
# tfg.layers.SumGraphSage(units=256, activation=tf.nn.relu, concat=True)
# tfg.layers.LSTMGraphSage(units=256, activation=tf.nn.relu, concat=True),
# tfg.layers.LSTMGraphSage(units=256, activation=tf.nn.relu, concat=True)
# tfg.layers.GCNGraphSage(units=256, activation=tf.nn.relu),
# tfg.layers.GCNGraphSage(units=256, activation=tf.nn.relu)
]
fc = tf.keras.Sequential([
keras.layers.Dropout(0.3),
tf.keras.layers.Dense(num_classes)
])
num_sampled_neighbors_list = [25, 10]
def sample_edge_index_list(graph):
sampled_edge_index_list = []
neighbor_sampler = graph.cache["sampler"]
for num_sampled_neighbors in num_sampled_neighbors_list:
sampled_edge_index, _ = neighbor_sampler.sample(k=num_sampled_neighbors)
sampled_edge_index_list.append(sampled_edge_index)
return sampled_edge_index_list
@tf.function(
input_signature=(
train_graphs[0].tensor_spec_x,
tuple([tfg.Graph.tensor_spec_edge_index for _ in graph_sages]),
tf.TensorSpec(shape=[], dtype=tf.bool)
)
)
def forward(x, sampled_edge_index_list, training=False):
h = x
for i, (graph_sage, sampled_edge_index) in enumerate(zip(graph_sages, sampled_edge_index_list)):
h = graph_sage([h, sampled_edge_index], training=training)
h = fc(h, training=training)
return h
def compute_loss(logits, y, vars):
losses = tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits,
labels=tf.cast(y, tf.float32)
)
kernel_vars = [var for var in vars if "kernel" in var.name]
l2_losses = [tf.nn.l2_loss(kernel_var) for kernel_var in kernel_vars]
return tf.reduce_mean(losses) + tf.add_n(l2_losses) * 1e-5
def calc_f1(y_true, y_pred):
y_pred[y_pred > 0] = 1
y_pred[y_pred <= 0] = 0
return f1_score(y_true, y_pred, average="micro")
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-2)
@tf.function(
input_signature=(
train_graphs[0].tensor_spec_x,
tuple([tfg.Graph.tensor_spec_edge_index for _ in graph_sages]),
train_graphs[0].tensor_spec_y
)
)
def train_step(x, sampled_edge_index_list, y):
with tf.GradientTape() as tape:
logits = forward(x, sampled_edge_index_list, training=True)
loss = compute_loss(logits, y, tape.watched_variables())
vars = tape.watched_variables()
grads = tape.gradient(loss, vars)
optimizer.apply_gradients(zip(grads, vars))
return loss
def evaluate(graphs):
y_preds = []
y_true = []
for graph in graphs:
y_true.append(graph.y)
sampled_edge_index_list = sample_edge_index_list(graph)
logits = forward(graph.x, sampled_edge_index_list)
y_preds.append(logits.numpy())
y_pred = np.concatenate(y_preds, axis=0)
y = np.concatenate(y_true, axis=0)
mic = calc_f1(y, y_pred)
return mic
def create_generator():
while True:
for graph in train_graphs:
sampled_edge_index_list = sample_edge_index_list(graph)
x = tf.convert_to_tensor(graph.x)
sampled_edge_index_list = tuple(
[tf.convert_to_tensor(edge_index) for edge_index in sampled_edge_index_list])
y = tf.convert_to_tensor(graph.y)
yield x, sampled_edge_index_list, y
dataset = tf.data.Dataset.from_generator(
create_generator,
output_signature=(
train_graphs[0].tensor_spec_x,
tuple([tfg.Graph.tensor_spec_edge_index for _ in graph_sages]),
train_graphs[0].tensor_spec_y
)
).prefetch(20)
for step, (x, sampled_edge_index_list, y) in tqdm(enumerate(dataset)):
loss = train_step(x, sampled_edge_index_list, y)
if step % 100 == 0:
valid_f1_mic = evaluate(valid_graphs)
test_f1_mic = evaluate(test_graphs)
print("step = {}\tloss = {}\tvalid_f1_micro = {}".format(step, loss, valid_f1_mic))
print("step = {}\ttest_f1_micro = {}".format(step, test_f1_mic))
if step == 1000:
break