-
Notifications
You must be signed in to change notification settings - Fork 2
/
perturbation.cc
195 lines (173 loc) · 7.07 KB
/
perturbation.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#include "perturbation.h"
#include <psi4/libciomr/libciomr.h>
#include <psi4/libqt/qt.h>
#include <psi4/libmints/mintshelper.h>
#include <psi4/libmints/matrix.h>
#include "psi4/libpsi4util/PsiOutStream.h"
namespace psi { namespace ugacc {
typedef psi::PsiOutStream OutFile;
Perturbation::Perturbation(std::string op, shared_ptr<Wavefunction> ref,
shared_ptr<MintsHelper> mints, bool full_virtual_space)
{
operator_ = op;
// Basis-set parameters
int nmo = ref->nmo();
int nso = ref->nso();
int nfzc = ref->nfrzc();
int nfzv = 0;
Dimension frzvpi(ref->nirrep());
if(!full_virtual_space)
for(int i=0; i < ref->nirrep(); i++) { frzvpi[i] = ref->frzvpi()[i]; nfzv += ref->frzvpi()[i]; }
else
for(int i=0; i < ref->nirrep(); i++) frzvpi[i] = 0;
nact_ = nmo - nfzc - nfzv;
outfile->Printf("\n\t==> Perturbation = %s <==\n", op.c_str());
outfile->Printf("\tNMO = %d; NSO = %d; NFZC = %d; NFZV = %d; NACT = %d\n", nmo, nso, nfzc, nfzv, nact_);
int *mo_offset = init_int_array(ref->nirrep()); // Pitzer offsets
for(int h=1; h < ref->nirrep(); h++) mo_offset[h] = mo_offset[h-1] + ref->nmopi()[h-1];
int *map = init_int_array(nmo); // Translates from Pitzer (including frozen docc) to QT
Dimension doccpi = ref->doccpi();
Dimension soccpi = ref->soccpi();
Dimension frzcpi = ref->frzcpi();
Dimension nmopi = ref->nmopi();
reorder_qt( (int*) doccpi, (int*) soccpi, (int*) frzcpi, (int*) frzvpi, map, (int*) nmopi, ref->nirrep());
// Symmetry info
shared_ptr<Molecule> mol = ref->molecule();
shared_ptr<IntegralFactory> fact = ref->integral();
shared_ptr<MatrixFactory> mats = ref->matrix_factory();
OperatorSymmetry dipsym(1, mol, fact, mats);
int *prop_irreps;
if(operator_ == "Mu" || operator_ == "P" || operator_ == "P*") {
prop_irreps = new int[3];
prop_irreps[0] = dipsym.component_symmetry(0);
prop_irreps[1] = dipsym.component_symmetry(1);
prop_irreps[2] = dipsym.component_symmetry(2);
}
else if(operator_ == "L" || operator_ == "L*") {
prop_irreps = new int[3];
prop_irreps[0] = dipsym.component_symmetry(1) ^ dipsym.component_symmetry(2);
prop_irreps[1] = dipsym.component_symmetry(2) ^ dipsym.component_symmetry(0);
prop_irreps[2] = dipsym.component_symmetry(0) ^ dipsym.component_symmetry(1);
}
else if(operator_ == "Q" || operator_ == "RR") {
prop_irreps = new int[6];
prop_irreps[0] = dipsym.component_symmetry(0) ^ dipsym.component_symmetry(0);
prop_irreps[1] = dipsym.component_symmetry(0) ^ dipsym.component_symmetry(1);
prop_irreps[2] = dipsym.component_symmetry(0) ^ dipsym.component_symmetry(2);
prop_irreps[3] = dipsym.component_symmetry(1) ^ dipsym.component_symmetry(1);
prop_irreps[4] = dipsym.component_symmetry(1) ^ dipsym.component_symmetry(2);
prop_irreps[5] = dipsym.component_symmetry(2) ^ dipsym.component_symmetry(2);
}
// Grab the raw SO integrals
std::vector<SharedMatrix> prop;
if(operator_ == "Mu") prop = mints->so_dipole();
else if(operator_ == "P" || operator_ == "P*") prop = mints->so_nabla();
else if(operator_ == "L" || operator_ == "L*") prop = mints->so_angular_momentum();
else if(operator_ == "Q") prop = mints->so_traceless_quadrupole();
else if(operator_ == "RR") prop = mints->so_quadrupole();
// Transform and sort to QT ordering
SharedMatrix Ca = ref->Ca();
double **scf = Ca->to_block_matrix();
if(dipole(operator_)) prop_ = new double** [3];
else if(quadrupole(operator_)) prop_ = new double** [6];
if(operator_ == "P*" || operator_ == "L*") // take complex conjugate
for(int i=0; i < 3; i++) prop[i]->scale(-1.0);
if(operator_ == "L" || operator_ == "L*") // -1/2 in definition of magnetic dipole
for(int i=0; i < 3; i++) prop[i]->scale(-0.5);
for(int i=0; i < (dipole(operator_) ? 3 : 6); i++) {
double **A = prop[i]->to_block_matrix();
double **B = block_matrix(nso, nmo);
double **C = block_matrix(nmo, nmo);
C_DGEMM('n','n',nso,nmo,nso,1,A[0],nso,scf[0],nmo,0,B[0],nmo);
C_DGEMM('t','n',nmo,nmo,nso,1,scf[0],nmo,B[0],nmo,0,C[0],nmo);
prop_[i] = block_matrix(nact_, nact_);
for(int hl=0; hl < ref->nirrep(); hl++) {
int hr = hl ^ prop_irreps[i];
for(int p=ref->frzcpi()[hl]; p < (ref->nmopi()[hl]-frzvpi[hl]); p++) {
for(int q=ref->frzcpi()[hr]; q < (ref->nmopi()[hr]-frzvpi[hr]); q++) {
int P = map[p+mo_offset[hl]]; int Q = map[q+mo_offset[hr]];
prop_[i][P-nfzc][Q-nfzc] = C[p+mo_offset[hl]][q+mo_offset[hr]];
}
}
}
free_block(A); free_block(B); free_block(C);
}
free_block(scf);
delete [] prop_irreps;
free(mo_offset);
free(map);
}
Perturbation::~Perturbation()
{
for(int i=0; i < (dipole(operator_) ? 3 : 6); i++) free_block(prop_[i]);
delete [] prop_;
}
// void Perturbation::print(std::string out)
// {
// shared_ptr<psi::PsiOutStream> printer=(out=="outfile"?outfile:shared_ptr<OutFile>(new OutFile(out)));
//
// std::string cart = "XYZ";
//
// printer->Printf("\n");
// if(dipole(operator_)) {
// for(int i=0; i < 3; i++) {
// printer->Printf("%s(%c)\n", operator_.c_str(), cart[i]);
// mat_print(prop_[i], nact_, nact_, out);
// }
// }
// else if(quadrupole(operator_)) {
// for(int i=0,ij=0; i < 3; i++) {
// for(int j=i; j < 3; j++,ij++) {
// printer->Printf("%s(%c,%c)\n", operator_.c_str(), cart[i], cart[j]);
// mat_print(prop_[ij], nact_, nact_, out);
// }
// }
// }
// }
// void Perturbation::print(int i, std::string out)
// {
// shared_ptr<psi::PsiOutStream> printer=(out=="outfile"?outfile:shared_ptr<OutFile>(new OutFile(out)));
//
// std::string cart = "XYZ";
//
// printer->Printf("\n");
// if(dipole(operator_)) {
// printer->Printf("%s(%c)\n", operator_.c_str(), cart[i]);
// mat_print(prop_[i], nact_, nact_, out);
// }
// else throw PSIEXCEPTION("Single Cartesian index given for multipolar property?");
// }
// void Perturbation::print(int i, int j, std::string out)
// {
// shared_ptr<psi::PsiOutStream> printer=(out=="outfile"?outfile:shared_ptr<OutFile>(new OutFile(out)));
//
// std::string cart = "XYZ";
//
// printer->Printf("\n");
// if(dipole(operator_))
// throw PSIEXCEPTION("Two Cartesian indices given for dipolar property?");
// else if(quadrupole(operator_)) {
// int ij = ((i) > (j) ? (i)*((i)+1)/2 + (j) : (j)*((j)+1)/2 + (i));
// printer->Printf("%s(%c,%c)\n", operator_.c_str(), cart[i], cart[j]);
// mat_print(prop_[ij], nact_, nact_, out);
// }
// }
// void Perturbation::print() { print("outfile"); }
// void Perturbation::print(int i) { print(i, "outfile"); }
// void Perturbation::print(int i, int j) { print(i, j, "outfile"); }
bool Perturbation::allowed(std::string op)
{
if(op == "Mu" || op == "P" || op == "P*" || op == "L" || op == "L*" || op == "Q" || op == "RR") return true;
else return false;
}
bool Perturbation::dipole(std::string op)
{
if(op == "Mu" || op == "P" || op == "P*" || op == "L" || op == "L*") return true;
else return false;
}
bool Perturbation::quadrupole(std::string op)
{
if(op == "Q" || op == "RR") return true;
else return false;
}
}} // psi::ugacc