-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
581 lines (454 loc) · 19 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
import random
import os
import numpy as np
import pandas as pd
import torch
from torch.utils.data import Sampler, RandomSampler, SequentialSampler, DataLoader, WeightedRandomSampler
from torch import nn, optim
# from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.optim import lr_scheduler
import importlib
import math
import neptune
from neptune.utils import stringify_unsupported
import logging
import pickle
def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
"""
from https://github.com/huggingface/transformers/blob/main/src/transformers/optimization.py
Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after
a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
def lr_lambda(current_step: int):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
return max(
0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps))
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def get_cosine_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_cycles= 0.5, last_epoch= -1):
"""
from https://github.com/huggingface/transformers/blob/main/src/transformers/optimization.py
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
num_cycles (`float`, *optional*, defaults to 0.5):
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
following a half-cosine).
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
return LambdaLR(optimizer, lr_lambda, last_epoch)
def calc_grad_norm(parameters,norm_type=2.):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
if torch.logical_or(total_norm.isnan(), total_norm.isinf()):
total_norm = None
return total_norm
def calc_weight_norm(parameters,norm_type=2.):
# l2_loss = 0
# for param in parameters :
# l2_loss += 0.5 * torch.sum(param ** 2)
# return l2_loss
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
total_norm = torch.stack([torch.norm(p.detach(), norm_type).to(device) for p in parameters]).mean()
if torch.logical_or(total_norm.isnan(), total_norm.isinf()):
total_norm = None
return total_norm
class OrderedDistributedSampler(Sampler):
def __init__(self, dataset, num_replicas=None, rank=None):
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
self.total_size = self.num_samples * self.num_replicas
print("TOTAL SIZE", self.total_size)
def __iter__(self):
indices = list(range(len(self.dataset)))
# add extra samples to make it evenly divisible
indices += indices[: (self.total_size - len(indices))]
assert len(indices) == self.total_size
# subsample
indices = indices[
self.rank * self.num_samples : self.rank * self.num_samples + self.num_samples
]
print(
"SAMPLES",
self.rank * self.num_samples,
self.rank * self.num_samples + self.num_samples,
)
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self):
return self.num_samples
def sync_across_gpus(t, world_size):
torch.distributed.barrier()
gather_t_tensor = [torch.ones_like(t) for _ in range(world_size)]
torch.distributed.all_gather(gather_t_tensor, t)
return torch.cat(gather_t_tensor)
def set_seed(seed=1234):
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
def worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
def get_model(cfg, ds):
Net = importlib.import_module(cfg.model).Net
net = Net(cfg)
if cfg.pretrained_weights is not None:
if type(cfg.pretrained_weights) == list:
cfg.pretrained_weights = cfg.pretrained_weights[cfg.fold]
print(f'{cfg.local_rank}: loading weights from',cfg.pretrained_weights)
state_dict = torch.load(cfg.pretrained_weights, map_location='cpu')
if "model" in state_dict.keys():
state_dict = state_dict['model']
state_dict = {key.replace('module.',''):val for key,val in state_dict.items()}
if cfg.pop_weights is not None:
print(f'popping {cfg.pop_weights}')
to_pop = []
for key in state_dict:
for item in cfg.pop_weights:
if item in key:
to_pop += [key]
for key in to_pop:
print(f'popping {key}')
state_dict.pop(key)
net.load_state_dict(state_dict, strict=cfg.pretrained_weights_strict)
print(f'{cfg.local_rank}: weights loaded from',cfg.pretrained_weights)
return net
def create_checkpoint(cfg, model, optimizer, epoch, scheduler=None, scaler=None):
state_dict = model.state_dict()
if cfg.save_weights_only:
checkpoint = {"model": state_dict}
return checkpoint
checkpoint = {
"model": state_dict,
"optimizer": optimizer.state_dict(),
"epoch": epoch,
}
if scheduler is not None:
checkpoint["scheduler"] = scheduler.state_dict()
if scaler is not None:
checkpoint["scaler"] = scaler.state_dict()
return checkpoint
def load_checkpoint(cfg, model, optimizer, scheduler=None, scaler=None):
print(f'loading ckpt {cfg.resume_from}')
checkpoint = torch.load(cfg.resume_from, map_location='cpu')
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler_dict = checkpoint['scheduler']
if scaler is not None:
scaler.load_state_dict(checkpoint['scaler'])
epoch = checkpoint['epoch']
return model, optimizer, scheduler_dict, scaler, epoch
def get_dataset(df, cfg, mode='train'):
#modes train, val, index
print(f"Loading {mode} dataset")
if mode == 'train':
dataset = get_train_dataset(df, cfg)
# elif mode == 'train_val':
# dataset = get_val_dataset(df, cfg)
elif mode == 'val':
dataset = get_val_dataset(df, cfg)
elif mode == 'test':
dataset = get_test_dataset(df, cfg)
else:
pass
return dataset
def get_dataloader(ds, cfg, mode='train'):
if mode == 'train':
dl = get_train_dataloader(ds, cfg)
elif mode =='val':
dl = get_val_dataloader(ds, cfg)
elif mode =='test':
dl = get_test_dataloader(ds, cfg)
return dl
def get_train_dataset(train_df, cfg):
train_dataset = cfg.CustomDataset(train_df, cfg, aug=cfg.train_aug, mode="train")
if cfg.data_sample > 0:
train_dataset = torch.utils.data.Subset(train_dataset, np.arange(cfg.data_sample))
return train_dataset
def get_train_dataloader(train_ds, cfg):
if cfg.distributed:
sampler = torch.utils.data.distributed.DistributedSampler(
train_ds, num_replicas=cfg.world_size, rank=cfg.local_rank, shuffle=True, seed=cfg.seed
)
else:
try:
if cfg.random_sampler_frac > 0:
num_samples = int(len(train_ds) * cfg.random_sampler_frac)
sample_weights = train_ds.sample_weights
sampler = WeightedRandomSampler(sample_weights, num_samples= num_samples )
else:
sampler = None
except:
sampler = None
if cfg.use_custom_batch_sampler:
sampler = RandomSampler(train_ds)
bsampler = CustomBatchSampler(sampler, batch_size =cfg.batch_size, drop_last=cfg.drop_last)
train_dataloader = DataLoader(
train_ds,
batch_sampler=bsampler,
# shuffle=(sampler is None),
# batch_size=cfg.batch_size,
num_workers=cfg.num_workers,
pin_memory=cfg.pin_memory,
collate_fn=cfg.tr_collate_fn,
# drop_last=cfg.drop_last,
worker_init_fn=worker_init_fn,
)
else:
train_dataloader = DataLoader(
train_ds,
sampler=sampler,
shuffle=(sampler is None),
batch_size=cfg.batch_size,
num_workers=cfg.num_workers,
pin_memory=cfg.pin_memory,
collate_fn=cfg.tr_collate_fn,
drop_last=cfg.drop_last,
worker_init_fn=worker_init_fn,
)
print(f"train: dataset {len(train_ds)}, dataloader {len(train_dataloader)}")
return train_dataloader
def get_val_dataset(val_df, cfg, allowed_targets=None):
val_dataset = cfg.CustomDataset(val_df, cfg, aug=cfg.val_aug, mode="val")
return val_dataset
def get_val_dataloader(val_ds, cfg):
if cfg.distributed and cfg.eval_ddp:
sampler = OrderedDistributedSampler(
val_ds, num_replicas=cfg.world_size, rank=cfg.local_rank
)
else:
sampler = SequentialSampler(val_ds)
if cfg.batch_size_val is not None:
batch_size = cfg.batch_size_val
else:
batch_size = cfg.batch_size
val_dataloader = DataLoader(
val_ds,
sampler=sampler,
batch_size=batch_size,
num_workers=cfg.num_workers,
pin_memory=cfg.pin_memory,
collate_fn=cfg.val_collate_fn,
worker_init_fn=worker_init_fn,
)
print(f"valid: dataset {len(val_ds)}, dataloader {len(val_dataloader)}")
return val_dataloader
def get_test_dataset(test_df, cfg):
test_dataset = cfg.CustomDataset(test_df, cfg, aug=cfg.val_aug, mode="test")
return test_dataset
def get_test_dataloader(test_ds, cfg):
if cfg.distributed and cfg.eval_ddp:
sampler = OrderedDistributedSampler(
test_ds, num_replicas=cfg.world_size, rank=cfg.local_rank
)
else:
sampler = SequentialSampler(test_ds)
if cfg.batch_size_val is not None:
batch_size = cfg.batch_size_val
else:
batch_size = cfg.batch_size
test_dataloader = DataLoader(
test_ds,
sampler=sampler,
batch_size=batch_size,
num_workers=cfg.num_workers,
pin_memory=cfg.pin_memory,
collate_fn=cfg.val_collate_fn,
worker_init_fn=worker_init_fn,
)
print(f"test: dataset {len(test_ds)}, dataloader {len(test_dataloader)}")
return test_dataloader
def get_optimizer(model, cfg):
params = model.parameters()
if cfg.optimizer == "Adam":
optimizer = optim.Adam(params, lr=cfg.lr, weight_decay=cfg.weight_decay)
elif cfg.optimizer == "AdamW_plus":
paras = list(model.named_parameters())
no_decay = ["bias", "LayerNorm.bias"]
params = [{"params": [param for name, param in paras if (not any(nd in name for nd in no_decay))],
"lr": cfg.lr,
"weight_decay":cfg.weight_decay},
{"params": [param for name, param in paras if (any(nd in name for nd in no_decay))],
"lr": cfg.lr,
"weight_decay":0.},
]
optimizer = optim.AdamW(params, lr=cfg.lr)
elif cfg.optimizer == "AdamW":
optimizer = optim.AdamW(params, lr=cfg.lr, weight_decay=cfg.weight_decay)
elif cfg.optimizer == "SGD":
optimizer = optim.SGD(
params,
lr=cfg.lr,
momentum=cfg.sgd_momentum,
nesterov=cfg.sgd_nesterov,
weight_decay=cfg.weight_decay,
)
return optimizer
def get_scheduler(cfg, optimizer, total_steps):
if cfg.schedule == "steplr":
scheduler = optim.lr_scheduler.StepLR(
optimizer,
step_size=cfg.epochs_step * (total_steps // cfg.batch_size) // cfg.world_size,
gamma=0.5,
)
elif cfg.schedule == "cosine":
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=cfg.warmup * (total_steps // cfg.batch_size) // cfg.world_size,
num_training_steps=cfg.epochs * (total_steps // cfg.batch_size) // cfg.world_size,
num_cycles = cfg.num_cycles
)
elif cfg.schedule == "linear":
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=0,
num_training_steps=cfg.epochs * (total_steps // cfg.batch_size) // cfg.world_size,
)
elif cfg.schedule == "CosineAnnealingLR":
T_max = int(np.ceil(0.5*total_steps))
scheduler = lr_scheduler.CosineAnnealingLR(optimizer,
T_max=T_max,
eta_min=1e-8)
# print("num_steps", (total_steps // cfg.batch_size) // cfg.world_size)
else:
scheduler = None
return scheduler
def setup_neptune(cfg):
neptune_run = None
if cfg.neptune_project:
neptune_run = neptune.init_run(
project=cfg.neptune_project,
# tags=cfg.tags,
mode=cfg.neptune_connection_mode,
capture_stdout=False,
capture_stderr=False,
source_files=[f'models/{cfg.model}.py',f'data/{cfg.dataset}.py',f'configs/{cfg.name}.py']
)
neptune_run["cfg"] = stringify_unsupported(cfg.__dict__)
return neptune_run
def read_df(fn):
if 'parquet' in fn:
df = pd.read_parquet(fn, engine = "fastparquet")
else:
df = pd.read_csv(fn)
return df
def get_data(cfg):
# setup dataset
if type(cfg.train_df) == list:
cfg.train_df = cfg.train_df[cfg.fold]
print(f"reading {cfg.train_df}")
df = read_df(cfg.train_df)
if cfg.test:
test_df = read_df(cfg.test_df)
else:
test_df = None
if cfg.val_df:
if type(cfg.val_df) == list:
cfg.val_df = cfg.val_df[cfg.fold]
val_df = read_df(cfg.val_df)
if cfg.fold > -1:
if 'fold' in val_df.columns:
val_df = val_df[val_df["fold"] == cfg.fold]
train_df = df[df["fold"] != cfg.fold]
else:
train_df = df
else:
train_df = df
else:
if cfg.fold == -1:
val_df = df[df["fold"] == 0]
else:
val_df = df[df["fold"] == cfg.fold]
train_df = df[df["fold"] != cfg.fold]
return train_df, val_df, test_df
def upload_s3(cfg):
from boto3.session import Session
import boto3
BUCKET_NAME = cfg.s3_bucket_name
ACCESS_KEY = cfg.s3_access_key
SECRET_KEY = cfg.s3_secret_key
session = Session(aws_access_key_id=ACCESS_KEY,
aws_secret_access_key=SECRET_KEY)
s3 = session.resource('s3')
s3.Bucket(BUCKET_NAME).upload_file(f"{cfg.output_dir}/fold{cfg.fold}/val_data_seed{cfg.seed}.pth", f"output/{cfg.name}/fold{cfg.fold}/val_data_seed{cfg.seed}.pth")
s3.Bucket(BUCKET_NAME).upload_file(f"{cfg.output_dir}/fold{cfg.fold}/test_data_seed{cfg.seed}.pth", f"output/{cfg.name}/fold{cfg.fold}/test_data_seed{cfg.seed}.pth")
s3.Bucket(BUCKET_NAME).upload_file(f"{cfg.output_dir}/fold{cfg.fold}/submission_seed{cfg.seed}.csv", f"output/{cfg.name}/fold{cfg.fold}/submission_seed{cfg.seed}.csv")
def flatten(t):
return [item for sublist in t for item in sublist]
def set_pandas_display():
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows',10000)
pd.set_option('display.width', 10000)
pd.set_option('display.float_format', lambda x: '%.3f' % x)
def dumpobj(file, obj):
with open(file, 'wb') as handle:
pickle.dump(obj, handle, protocol=pickle.HIGHEST_PROTOCOL)
def loadobj(file):
with open(file, 'rb') as handle:
return pickle.load(handle)
def get_level(level_str):
''' get level'''
l_names = {logging.getLevelName(lvl).lower(): lvl for lvl in [10, 20, 30, 40, 50]} # noqa
return l_names.get(level_str.lower(), logging.INFO)
def get_logger(name, level_str):
''' get logger'''
logger = logging.getLogger(name)
logger.setLevel(get_level(level_str))
handler = logging.StreamHandler()
handler.setLevel(level_str)
handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')) # pylint: disable=C0301 # noqa
logger.addHandler(handler)
return logger