-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
217 lines (187 loc) · 9.58 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#coding=utf8
from MPCNN.data_helper import load_set, batch_iter
import MPCNN.embedding as emb
from MPCNN.model import *
import time
import os
import datetime
from tensorflow.python import debug as tf_debug
import tensorflow as tf
import numpy as np
from sklearn.utils import shuffle
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import logging
# 创建一个logger
logger = logging.getLogger('mylogger')
logger.setLevel(logging.DEBUG)
# 创建一个handler,用于写入日志文件
timestamp = str(int(time.time()))
fh = logging.FileHandler('./log/log_' + timestamp +'.txt')
fh.setLevel(logging.DEBUG)
# 再创建一个handler,用于输出到控制台
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
# 定义handler的输出格式
formatter = logging.Formatter('[%(asctime)s][%(levelname)s] ## %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
# 给logger添加handler
logger.addHandler(fh)
logger.addHandler(ch)
tf.app.flags.DEFINE_integer('embedding_dim', 100, 'The dimension of the word embedding')
tf.app.flags.DEFINE_integer('num_filters_A', 50, 'The number of filters in block A')
tf.app.flags.DEFINE_integer('num_filters_B', 50, 'The number of filters in block B')
tf.app.flags.DEFINE_integer('n_hidden', 150, 'number of hidden units in the fully connected layer')
tf.app.flags.DEFINE_integer('sentence_length', 100, 'max size of sentence')
tf.app.flags.DEFINE_integer('num_classes', 6, 'num of the labels')
tf.flags.DEFINE_float("l2_reg_lambda", 1, "L2 regularization lambda (default: 0.0)")
tf.app.flags.DEFINE_integer('num_epochs', 85, 'Number of epochs to be trained')
tf.app.flags.DEFINE_integer('batch_size', 64, 'size of mini batch')
tf.app.flags.DEFINE_integer("display_step", 100, "Evaluate model on dev set after this many steps (default: 100)")
tf.app.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)")
tf.app.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)")
tf.app.flags.DEFINE_integer("num_checkpoints", 5, "Number of checkpoints to store (default: 5)")
tf.app.flags.DEFINE_float('lr', 1e-3, 'learning rate')
tf.app.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.app.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
filter_size = [1, 2, 100]
conf = tf.app.flags.FLAGS
conf._parse_flags()
#glove是载入的次向量。glove.d是单词索引字典<word, index>,glove.g是词向量矩阵<词个数,300>
print('loading glove...')
glove = emb.GloVe(N=100)
# print("Loading data...")
Xtrain, ytrain = load_set(glove, path='./sts/semeval-sts/all')
Xtrain[0], Xtrain[1], ytrain = shuffle(Xtrain[0], Xtrain[1], ytrain)
#[22592, 句长]
Xtest, ytest = load_set(glove, path='./sts/semeval-sts/2016')
Xtest[0], Xtest[1], ytest = shuffle(Xtest[0], Xtest[1], ytest)
#[1186, 句长]
# max_sent_length = max([len(x) for SS in Xtrain for x in SS])
# print max_sent_length #最大的句子长度为84
#-------------------------------------Loading finished----------------------------------------------#
#-------------------------------------training the network----------------------------------------------#
with tf.Session() as sess:
# sess = tf_debug.LocalCLIDebugWrapperSession(sess)
# sess.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan)
input_1 = tf.placeholder(tf.int32, [None, conf.sentence_length], name="input_x1")
input_2 = tf.placeholder(tf.int32, [None, conf.sentence_length], name="input_x2")
input_3 = tf.placeholder(tf.float32, [None, conf.num_classes], name="input_y")
dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
with tf.name_scope("embendding"):
s0_embed = tf.nn.embedding_lookup(glove.g, input_1)
s1_embed = tf.nn.embedding_lookup(glove.g, input_2)
with tf.name_scope("reshape"):
input_x1 = tf.reshape(s0_embed, [-1, conf.sentence_length, conf.embedding_dim, 1])
input_x2 = tf.reshape(s1_embed, [-1, conf.sentence_length, conf.embedding_dim, 1])
input_y = tf.reshape(input_3, [-1, conf.num_classes])
# sent1_unstack = tf.unstack(input_x1, axis=1)
# sent2_unstack = tf.unstack(input_x2, axis=1)
# D = []
# for i in range(len(sent1_unstack)):
# d = []
# for j in range(len(sent2_unstack)):
# dis = compute_cosine_distance(sent1_unstack[i], sent2_unstack[j])
# d.append(dis)
# D.append(d)
# D = tf.reshape(D, [-1, len(sent1_unstack), len(sent2_unstack), 1])
# A = [tf.nn.softmax(tf.expand_dims(tf.reduce_sum(D, axis=i), 2)) for i in [2, 1]]
#
# print A[1]
# print A[1] * input_x2
# atten_embed = tf.concat([input_x2, A[1] * input_x2], 2)
setence_model = MPCNN_Layer(conf.num_classes, conf.embedding_dim, filter_size,
[conf.num_filters_A, conf.num_filters_B], conf.n_hidden,
input_x1, input_x2, input_y, dropout_keep_prob, conf.l2_reg_lambda)
global_step = tf.Variable(0, name='global_step', trainable=False)
setence_model.similarity_measure_layer()
optimizer = tf.train.AdamOptimizer(conf.lr)
grads_and_vars = optimizer.compute_gradients(setence_model.loss)
train_step = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
# print("Writing to {}\n".format(out_dir))
#
loss_summary = tf.summary.scalar("loss", setence_model.loss)
acc_summary = tf.summary.scalar("accuracy", setence_model.accuracy)
#
train_summary_op = tf.summary.merge([loss_summary, acc_summary])
train_summary_dir = os.path.join(out_dir, "summaries", "train")
train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
#
dev_summary_op = tf.summary.merge([loss_summary, acc_summary])
dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)
#
# checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
# checkpoint_prefix = os.path.join(checkpoint_dir, "model")
# if not os.path.exists(checkpoint_dir):
# os.makedirs(checkpoint_dir)
# saver = tf.train.Saver(tf.global_variables(), max_to_keep=conf.num_checkpoints)
def train(x1_batch, x2_batch, y_batch):
"""
A single training step
"""
feed_dict = {
input_1: x1_batch,
input_2: x2_batch,
input_3: y_batch,
dropout_keep_prob: 0.5
}
_, step, summaries, batch_loss, accuracy = sess.run(
[train_step, global_step, train_summary_op, setence_model.loss, setence_model.accuracy],
feed_dict)
time_str = datetime.datetime.now().isoformat()
logger.info("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, batch_loss, accuracy))
train_summary_writer.add_summary(summaries, step)
def dev_step(x1_batch, x2_batch, y_batch, writer=None):
"""
Evaluates model on a dev set
"""
feed_dict = {
input_1: x1_batch,
input_2: x2_batch,
input_3: y_batch,
dropout_keep_prob: 1
}
_, step, summaries, batch_loss, accuracy = sess.run(
[train_step, global_step, dev_summary_op, setence_model.loss, setence_model.accuracy],
feed_dict)
time_str = datetime.datetime.now().isoformat()
dev_summary_writer.add_summary(summaries, step)
# if writer:
# writer.add_summary(summaries, step)
return batch_loss, accuracy
sess.run(tf.global_variables_initializer())
batches = batch_iter(list(zip(Xtrain[0], Xtrain[1], ytrain)), conf.batch_size, conf.num_epochs)
for batch in batches:
x1_batch, x2_batch, y_batch = zip(*batch)
train(x1_batch, x2_batch, y_batch)
current_step = tf.train.global_step(sess, global_step)
if current_step % conf.evaluate_every == 0:
total_dev_loss = 0.0
total_dev_accuracy = 0.0
logger.info("\nEvaluation:")
dev_batches = batch_iter(list(zip(Xtest[0], Xtest[1], ytest)), conf.batch_size, 1)
for dev_batch in dev_batches:
x1_dev_batch, x2_dev_batch, y_dev_batch = zip(*dev_batch)
dev_loss, dev_accuracy = dev_step(x1_dev_batch, x2_dev_batch, y_dev_batch)
total_dev_loss += dev_loss
total_dev_accuracy += dev_accuracy
total_dev_accuracy = total_dev_accuracy / (len(ytest) / conf.batch_size)
logger.info("dev_loss {:g}, dev_acc {:g}, num_dev_batches {:g}".format(total_dev_loss, total_dev_accuracy,
len(ytest) / conf.batch_size))
# train_summary_writer.add_summary(summaries)
#sess = tf_debug.LocalCLIDebugWrapperSession(sess)
# for i in range(conf.num_epochs):
# training_batch = zip(range(0, len(Xtrain[0]), conf.batch_size),
# range(conf.batch_size, len(Xtrain[0]) + 1, conf.batch_size))
# for start, end in training_batch:
# feed_dict = {input_1: Xtrain[0][start:end], input_2: Xtrain[1][start:end],
# dropout_keep_prob: 0.5, input_3: ytrain[start:end]}
# print start
# #assert all(x.shape == (100, 100) for x in Xtrain[0][start:end])
# loss, _ = sess.run(train_step, feed_dict=feed_dict)
# print("Epoch:", '%04d' % (i + 1), "cost=", "{:.9f}".format(loss))
logger.info("Optimization Finished!")