-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathmain_ucr_109.py
180 lines (154 loc) · 7.43 KB
/
main_ucr_109.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Chang Wei Tan, Angus Dempster, Christoph Bergmeir, Geoffrey I Webb
#
# MultiRocket: Multiple pooling operators and transformations for fast and effective time series classification
# https://arxiv.org/abs/2102.00457
import argparse
import os
import platform
import socket
from datetime import datetime
import numba
import numpy as np
import pandas as pd
import psutil
import pytz
from sklearn.metrics import accuracy_score
from multirocket.multirocket import MultiRocket
from utils.data_loader import read_univariate_ucr, get_classification_datasets_summary, non_109_datasets
from utils.tools import create_directory
pd.set_option('display.max_columns', 500)
itr = 0
num_features = 10000
save = True
num_threads = 0
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--datapath", type=str, required=False, default="data/sample/")
parser.add_argument("-p", "--problem", type=str, required=False, default="ArrowHead")
parser.add_argument("-i", "--iter", type=int, required=False, default=1)
parser.add_argument("-n", "--num_features", type=int, required=False, default=50000)
parser.add_argument("-t", "--num_threads", type=int, required=False, default=-1)
parser.add_argument("-s", "--save", type=bool, required=False, default=True)
parser.add_argument("-v", "--verbose", type=int, required=False, default=2)
arguments = parser.parse_args()
if __name__ == '__main__':
data_path = arguments.datapath
problem = arguments.problem
num_features = arguments.num_features
num_threads = arguments.num_threads
itr = arguments.iter
save = arguments.save
verbose = arguments.verbose
output_path = os.getcwd() + "/output/"
classifier_name = "MultiRocket_{}".format(num_features)
datasets = get_classification_datasets_summary(subset="109")
if problem == "":
datasets["Train/Test"] = datasets["Train"] + datasets["Test"]
datasets.sort_values(by="Train/Test", inplace=True)
datasets.reset_index(inplace=True, drop=True)
else:
problem = problem.split(";")
datasets = datasets.loc[datasets.Name.isin(problem)].reset_index(drop=True)
if num_threads > 0:
numba.set_num_threads(num_threads)
for i in range(len(datasets)):
problem = datasets.Name[i].strip()
data_folder = data_path + problem + "/"
if not os.path.exists(data_folder):
continue
output_dir = "{}/multirocket/resample_{}/{}/{}/".format(
output_path,
itr,
classifier_name,
problem
)
if save:
create_directory(output_dir)
print("=======================================================================")
print("Starting Experiments")
print("=======================================================================")
print("Data path: {}".format(data_path))
print("Output Dir: {}".format(output_dir))
print("Iteration: {}".format(itr))
print("Problem: {}".format(problem))
print("Number of Features: {}".format(num_features))
# use tsv. Change the data loader for other file format
train_file = data_folder + problem + "_TRAIN.tsv"
test_file = data_folder + problem + "_TEST.tsv"
print("Loading data")
X_train, y_train = read_univariate_ucr(train_file, normalise=False)
X_test, y_test = read_univariate_ucr(test_file, normalise=False)
# returns ntc format, remove the last dimension
X_train = X_train.reshape((X_train.shape[0], X_train.shape[1]))
X_test = X_test.reshape((X_test.shape[0], X_test.shape[1]))
if (itr > 0) and (problem not in non_109_datasets):
all_data = np.vstack((X_train, X_test))
all_labels = np.hstack((y_train, y_test))
print(all_data.shape)
all_indices = np.arange(len(all_data))
training_indices = np.loadtxt("data/indices109/{}_INDICES_TRAIN.txt".format(problem),
skiprows=itr,
max_rows=1).astype(np.int32)
test_indices = np.setdiff1d(all_indices, training_indices, assume_unique=True)
X_train, y_train = all_data[training_indices, :], all_labels[training_indices]
X_test, y_test = all_data[test_indices, :], all_labels[test_indices]
nb_classes = len(np.unique(np.concatenate((y_train, y_test), axis=0)))
classifier = MultiRocket(
num_features=num_features,
verbose=verbose
)
yhat_train = classifier.fit(
X_train, y_train,
predict_on_train=False
)
if yhat_train is not None:
train_acc = accuracy_score(y_train, yhat_train)
else:
train_acc = -1
yhat_test = classifier.predict(X_test)
test_acc = accuracy_score(y_test, yhat_test)
# get cpu information
physical_cores = psutil.cpu_count(logical=False)
logical_cores = psutil.cpu_count(logical=True)
cpu_freq = psutil.cpu_freq()
max_freq = cpu_freq.max
min_freq = cpu_freq.min
memory = np.round(psutil.virtual_memory().total / 1e9)
df_metrics = pd.DataFrame(data=np.zeros((1, 21), dtype=np.float), index=[0],
columns=['timestamp', 'itr', 'classifier',
'num_features',
'dataset',
'train_acc', 'train_time',
'test_acc', 'test_time',
'generate_kernel_time',
'apply_kernel_on_train_time',
'apply_kernel_on_test_time',
'train_transform_time',
'test_transform_time',
'machine', 'processor',
'physical_cores',
"logical_cores",
'max_freq', 'min_freq', 'memory'])
df_metrics["timestamp"] = datetime.utcnow().replace(tzinfo=pytz.utc).strftime("%Y-%m-%d %H:%M:%S")
df_metrics["itr"] = itr
df_metrics["classifier"] = classifier_name
df_metrics["num_features"] = num_features
df_metrics["dataset"] = problem
df_metrics["train_acc"] = train_acc
df_metrics["train_time"] = classifier.train_duration
df_metrics["test_acc"] = test_acc
df_metrics["test_time"] = classifier.test_duration
df_metrics["generate_kernel_time"] = classifier.generate_kernel_duration
df_metrics["apply_kernel_on_train_time"] = classifier.apply_kernel_on_train_duration
df_metrics["apply_kernel_on_test_time"] = classifier.apply_kernel_on_test_duration
df_metrics["train_transform_time"] = classifier.train_transforms_duration
df_metrics["test_transform_time"] = classifier.test_transforms_duration
df_metrics["machine"] = socket.gethostname()
df_metrics["processor"] = platform.processor()
df_metrics["physical_cores"] = physical_cores
df_metrics["logical_cores"] = logical_cores
df_metrics["max_freq"] = max_freq
df_metrics["min_freq"] = min_freq
df_metrics["memory"] = memory
print(df_metrics)
if save:
df_metrics.to_csv(output_dir + 'results.csv', index=False)