-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtsne.py
85 lines (64 loc) · 2.13 KB
/
tsne.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# coding='utf-8'
"""t-SNE对手写数字进行可视化"""
import time
import os
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.manifold import TSNE
def get_data(path):
data=np.load(path)
X=data['vector']
labels=data['utt']
ID_list=[]
for label in labels:
ID_list.append(label.split('-')[0])
x_dic={}
for i in ID_list:
x_dic[i]=[]
for i in range(len(ID_list)):
if ID_list[i] in x_dic:
x_dic[ID_list[i]].append(X[i])
x_choose={}
for i in x_dic:
if len(x_dic[i])>=250:
x_choose[i]=x_dic[i]
print('select speakers with utts large than 250')
x_vector=[]
label_vector=[]
n=1
for i in x_choose:
for j in x_choose[i]:
x_vector.append(j)
label_vector.append(n)
n+=1
n_samples, n_dim =len(x_vector), x_vector[0].shape
n_labels=len(set(label_vector))
print('n_samples={}, n_dim={}, n_labels={}'.format(n_samples,n_dim,n_labels))
return x_vector, label_vector
def plot_embedding(data, label, title):
x_min, x_max = np.min(data, 0), np.max(data, 0)
data = (data - x_min) / (x_max - x_min)
if np.min(label, 0) != np.max(label, 0):
label_min, label_max = np.min(label, 0), np.max(label, 0)
label = (label - label_min) / (label_max - label_min)
else:
label=label
fig = plt.figure()
ax = plt.subplot(111)
plt.scatter(data[:, 0], data[:, 1], 10, c=label, cmap=plt.cm.Spectral, alpha=0.5)
plt.title(title)
return fig
def main(path0, epoch):
data, labels_color = get_data(path0)
print('Computing t-SNE embedding epoch')
n_labels=len(set(labels_color))
tsne = TSNE(n_components = 2, init='pca', random_state = 0)
result = tsne.fit_transform(data)
fig = plot_embedding(result, labels_color,'t-SNE z_vector epoch{} n_speaker={}'.format(epoch, n_labels))
if not os.path.exists('./tsne'):
os.mkdir('./tsne' );
plt.savefig("./tsne/z_vector_epoch{}_n_speaker={}.png".format(epoch, n_labels))
plt.close()
if __name__ == '__main__':
main()