-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscore.py
155 lines (110 loc) · 4.18 KB
/
score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import copy
import os
import torch
import matplotlib.pyplot as plt
import time
import numpy as np
import torch.optim as optim
import torch.nn.functional as F
def data_load(train_path, enroll_path, test_path, trails_path):
train = np.load(train_path)
enroll = np.load(enroll_path)
test = np.load(test_path)
tr_vec = train['vector']
en_vec = enroll['vector']
en_label = enroll['utt']
te_vec = test['vector']
te_label = test['utt']
en_vec = en_vec - tr_vec.mean(axis=0)
te_vec = te_vec - tr_vec.mean(axis=0)
trails = load_trails(trails_path)
return en_vec, en_label, te_vec, te_label, trails
def compute_eer(target_scores, nontarget_scores):
if isinstance(target_scores , list) is False:
target_scores = list(target_scores)
if isinstance(nontarget_scores , list) is False:
nontarget_scores = list(nontarget_scores)
target_scores = sorted(target_scores)
nontarget_scores = sorted(nontarget_scores)
target_size = len(target_scores);
nontarget_size = len(nontarget_scores)
for i in range(target_size-1):
target_position = i
nontarget_n = nontarget_size * float(target_position) / target_size
nontarget_position = int(nontarget_size - 1 - nontarget_n)
if nontarget_position < 0:
nontarget_position = 0
if nontarget_scores[nontarget_position] < target_scores[target_position]:
break
th = target_scores[target_position];
eer = target_position * 1.0 / target_size;
return eer, th
def compute_idr(trails_path, scores):
trails = load_trails(trails_path)
p=0
n=0
for lb in set(trails[1]):
sco_i = scores[trails[1]==lb]
s_index = np.argmax(sco_i)
tar = trails[2][trails[1]==lb]
if tar[s_index]=='target':
p+=1
else:
n+=1
idr = p/(n+p)
return idr
def load_trails(trails_path):
file = open(trails_path,'r')
trails=[]
enroll=[]
test =[]
tar =[]
for line in file:
line = line.strip('\n').split(' ')
enroll.append(line[0])
test.append(line[1])
tar.append(line[2])
trails.append(enroll)
trails.append(test)
trails.append(tar)
trails = np.array(trails)
return trails
def supervise_mean_var(data, label):
assert(data.shape[0] == label.shape[0]), 'data and label must have the same length'
label_class = np.array(list(set(copy.deepcopy(label))))
mean_list = []
label_list = []
for lb in label_class:
data_j = data[label==lb]
mean_j = data_j.mean(0)
mean_list.append(mean_j)
label_list.append(lb)
mean_class = np.array(mean_list)
mlabel = np.array(label_list)
return mean_class, mlabel
def Cosine_score(test_vec, te_label, enroll_vec, enroll_label, trails):
mean_class, mlabel = supervise_mean_var(enroll_vec, enroll_label)
Cosine_tensor_list=[]
tar=[]
for i in range(trails[0].shape[0]):
e = mean_class[mlabel==trails[0][i]][0]
t = test_vec[te_label==trails[1][i]][0]
Cosine_similarity = np.dot(e, t) / (np.linalg.norm(e) * np.linalg.norm(t))
Cosine_tensor_list.append(Cosine_similarity)
tar.append(trails[2][i])
Cosine_scores = np.array(Cosine_tensor_list)
return Cosine_scores, np.array(tar)
def cosine_scoring_by_trails(train_path,enroll_path,test_path,trails_path):
en_vec, en_label, te_vec, te_label, trails = data_load(train_path, enroll_path, test_path, trails_path)
Cosine_scores, tar = Cosine_score(te_vec, te_label, en_vec, en_label, trails)
eer, th = compute_eer(Cosine_scores[tar=='target'], Cosine_scores[tar=='nontarget'])
return eer
'''
if __name__ == "__main__":
train_path = './data/xvector/vox_4k.npz'
enroll_path = './data/xvector/Sitw/enroll.npz'
test_path = './data/xvector/Sitw/test.npz'
trails_path = './data/xvector/Sitw/core-core.lst'
eer = cosine_scoring_by_trails(train_path,enroll_path,test_path,trails_path)
print('eer={:.2f}'.format(eer*100))
'''