-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_load.py
84 lines (66 loc) · 2.52 KB
/
data_load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import numpy as np
import torch
import pdb
class data_load:
class Data:
def __init__(self, data):
self.x = data.astype(np.float32)
self.y = data.astype(np.int64)
def __init__(self,path, nclass = 0):
data, label = load_data_normalised(path, nclass)
self.dt = self.Data(data)
self.label = self.Data(label)
def get_data(path, n_filter=0):
data=np.load(path)
X=data['vector']
labels=data['utt']
ID_list=[]
for label in labels:
ID_list.append(label.split('-')[0])
x_dic={}
for i in ID_list:
x_dic[i]=[]
for i in range(len(ID_list)):
if ID_list[i] in x_dic:
x_dic[ID_list[i]].append(X[i])
x_choose={}
for i in x_dic:
if len(x_dic[i])>=n_filter:
x_choose[i]=x_dic[i]
print('x_choose done')
x_vector=[]
label_vector=[]
n=0
for i in x_choose:
for j in x_choose[i]:
x_vector.append(j)
label_vector.append(n)
n+=1
x_vector = np.array(x_vector)
label_vector = np.array(label_vector)
print('%d samples loaded, dim=%d, labels=%d, nclasses=%d'%(x_vector.shape[0], x_vector.shape[1], label_vector.shape[0], len(set(label_vector))))
print('label_vector1=',label_vector)
return x_vector, label_vector
def load_data_normalised(path, n_filter):
X, labels = get_data(path, n_filter)
return X, labels
def dataset_prepare(n_filter = 0, test_name=None):
#training set voxceleb_4k_speaker
print("loading training data from %s"%'./data/xvector/vox_4k.npz');
trn_data = data_load('./data/xvector/vox_4k.npz', n_filter)
t0_tensor = torch.from_numpy(trn_data.dt.x)
t0_label_tensor = torch.from_numpy(trn_data.label.y)
t0_dataset = torch.utils.data.TensorDataset(t0_tensor, t0_label_tensor)
#sitw enroll
print("loading enrollment data from %s"%'./data/xvector/Sitw/enroll.npz');
enr_data = data_load('./data/xvector/Sitw/enroll.npz',0)
t1_tensor = torch.from_numpy(enr_data.dt.x)
t1_label_tensor = torch.from_numpy(enr_data.label.y)
t1_dataset = torch.utils.data.TensorDataset(t1_tensor,t1_label_tensor)
#testset: verify
print("loading enrollment data from %s"%'./data/xvector/Sitw/test.npz');
ver_data = data_load('./data/xvector/Sitw/test.npz',0)
t2_tensor = torch.from_numpy(ver_data.dt.x)
t2_label_tensor = torch.from_numpy(ver_data.label.y)
t2_dataset = torch.utils.data.TensorDataset(t2_tensor,t2_label_tensor)
return t0_dataset, t1_dataset, t2_dataset