-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsmall_unet.py
252 lines (226 loc) · 12.6 KB
/
small_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import numpy as np
import tensorflow as tf
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.initializers import HeNormal
from tensorflow.keras.layers import Concatenate, Add, Activation, Input
from tensorflow.keras.layers import Conv2D, Dropout, Conv2DTranspose, BatchNormalization, MaxPooling2D, UpSampling2D
from tensorflow.keras.losses import CategoricalCrossentropy
from tensorflow.keras import Model, Sequential
from tensorflow.keras.metrics import Recall, Precision, CategoricalAccuracy
from typing import Dict, Optional, Any
from cvnn.losses import ComplexAverageCrossEntropy, ComplexWeightedAverageCrossEntropy
from cvnn.metrics import ComplexCategoricalAccuracy, ComplexAverageAccuracy, ComplexPrecision, ComplexRecall
from cvnn.layers import complex_input, ComplexConv2D, ComplexDropout, \
ComplexMaxPooling2DWithArgmax, ComplexUnPooling2D, ComplexInput, ComplexBatchNormalization, ComplexDense, \
ComplexUpSampling2D, ComplexConv2DTranspose, ComplexAvgPooling2D, ComplexPolarAvgPooling2D
from cvnn.activations import cart_softmax, cart_relu
from cvnn.initializers import ComplexHeNormal
IMG_HEIGHT = None # 128
IMG_WIDTH = None # 128
DROPOUT_DEFAULT = {
"downsampling": None,
"bottle_neck": None,
"upsampling": None
}
hyper_params = {
'padding': 'same',
'consecutive_conv_layers': 0,
'kernel_shape': (3, 3),
'block6_kernel_shape': (1, 1),
'max_pool_kernel': (2, 2),
'concat': Concatenate,
'upsampling_layer': ComplexUpSampling2D,
'stride': 2,
'pooling': ComplexMaxPooling2DWithArgmax,
'activation': cart_relu,
'kernels': [12, 24, 48],
'output_function': cart_softmax,
'init': ComplexHeNormal(),
'optimizer': Adam,
'learning_rate': 0.0001
}
tf_hyper_params = {
'upsampling_layer': UpSampling2D,
'activation': "relu",
'output_function': "softmax",
'init': HeNormal(),
'optimizer': Adam(learning_rate=0.001, beta_1=0.9)
}
def _get_downsampling_block(input_to_block, num: int, dtype=np.complex64, dropout=False):
conv = ComplexConv2D(hyper_params['kernels'][num], hyper_params['kernel_shape'],
activation='linear', padding=hyper_params['padding'],
kernel_initializer=hyper_params['init'], dtype=dtype)(input_to_block)
for _ in range(hyper_params['consecutive_conv_layers']):
conv = ComplexConv2D(hyper_params['kernels'][num], hyper_params['kernel_shape'],
activation='linear', padding=hyper_params['padding'],
kernel_initializer=hyper_params['init'], dtype=dtype)(conv)
conv = ComplexBatchNormalization(dtype=dtype)(conv)
conv = Activation(hyper_params['activation'])(conv)
if hyper_params['pooling'] == ComplexMaxPooling2DWithArgmax:
pool, pool_argmax = ComplexMaxPooling2DWithArgmax(hyper_params['max_pool_kernel'],
strides=hyper_params['stride'])(conv)
elif hyper_params['pooling'] == ComplexAvgPooling2D:
pool = ComplexAvgPooling2D(hyper_params['max_pool_kernel'], strides=hyper_params['stride'])(conv)
pool_argmax = None
elif hyper_params['pooling'] == ComplexPolarAvgPooling2D:
pool = ComplexPolarAvgPooling2D(hyper_params['max_pool_kernel'], strides=hyper_params['stride'])(conv)
pool_argmax = None
else:
raise ValueError(f"Unknown pooling {hyper_params['pooling']}")
if dropout:
pool = ComplexDropout(rate=dropout, dtype=dtype)(pool)
return pool, pool_argmax
def _tf_get_downsampling_block(input_to_block, num: int, activation, dropout=False):
conv = Conv2D(tf_hyper_params['kernels'][num], tf_hyper_params['kernel_shape'], activation=None,
padding=tf_hyper_params['padding'], kernel_initializer=tf_hyper_params['init'])(input_to_block)
for _ in range(hyper_params['consecutive_conv_layers']):
conv = Conv2D(tf_hyper_params['kernels'][num], tf_hyper_params['kernel_shape'], activation=None,
padding=tf_hyper_params['padding'], kernel_initializer=tf_hyper_params['init'])(conv)
conv = BatchNormalization()(conv)
conv = Activation(activation)(conv)
pool = MaxPooling2D(tf_hyper_params['max_pool_kernel'], strides=tf_hyper_params['stride'])(conv)
if dropout:
pool = Dropout(rate=dropout)(pool)
return pool
def _get_upsampling_block(input_to_block, pool_argmax, kernels, num: int, activation, dropout=False, dtype=np.complex64):
if isinstance(hyper_params['upsampling_layer'], ComplexUnPooling2D) or \
hyper_params['upsampling_layer'] == ComplexUnPooling2D:
unpool = ComplexUnPooling2D(upsampling_factor=2)([input_to_block, pool_argmax])
elif isinstance(hyper_params['upsampling_layer'], ComplexUpSampling2D) or \
hyper_params['upsampling_layer'] == ComplexUpSampling2D:
unpool = ComplexUpSampling2D(size=2)(input_to_block)
elif isinstance(hyper_params['upsampling_layer'], ComplexConv2DTranspose) or \
hyper_params['upsampling_layer'] == ComplexConv2DTranspose:
unpool = ComplexConv2DTranspose(filters=hyper_params["kernels"][num], kernel_size=3,
strides=(2, 2), padding='same', dilation_rate=(1, 1))(input_to_block)
else:
raise ValueError(f"Upsampling method {hyper_params['upsampling_layer'].name} not supported")
conv = ComplexConv2D(kernels, hyper_params['kernel_shape'],
activation='linear', padding=hyper_params['padding'],
kernel_initializer=hyper_params['init'], dtype=dtype)(unpool)
for _ in range(hyper_params['consecutive_conv_layers']):
conv = ComplexConv2D(kernels, hyper_params['kernel_shape'],
activation='linear', padding=hyper_params['padding'],
kernel_initializer=hyper_params['init'], dtype=dtype)(conv)
conv = ComplexBatchNormalization(dtype=dtype)(conv)
conv = Activation(activation)(conv)
if dropout:
conv = ComplexDropout(rate=dropout, dtype=dtype)(conv)
return conv
def _get_tf_upsampling_block(input_to_block, kernels, num: int,
activation=tf_hyper_params['activation'], dropout=False):
if isinstance(tf_hyper_params['upsampling_layer'], UpSampling2D) or \
UpSampling2D == tf_hyper_params['upsampling_layer']:
unpool = UpSampling2D(size=2)(input_to_block)
elif isinstance(tf_hyper_params['upsampling_layer'], Conv2DTranspose) or \
Conv2DTranspose == tf_hyper_params['upsampling_layer']:
# import pdb; pdb.set_trace()
unpool = Conv2DTranspose(filters=hyper_params["kernels"][num], kernel_size=3)(input_to_block)
else:
# import pdb; pdb.set_trace()
raise ValueError(f"Upsampling method {tf_hyper_params['upsampling_layer'].name} not supported")
conv = Conv2D(kernels, tf_hyper_params['kernel_shape'], activation=None, padding=tf_hyper_params['padding'],
kernel_initializer=tf_hyper_params['init'])(unpool)
for _ in range(hyper_params['consecutive_conv_layers']):
conv = Conv2D(kernels, tf_hyper_params['kernel_shape'], activation=None, padding=tf_hyper_params['padding'],
kernel_initializer=tf_hyper_params['init'])(conv)
conv = BatchNormalization()(conv)
conv = Activation(activation)(conv)
if dropout:
conv = Dropout(rate=dropout)(conv)
return conv
def _get_small_model(in1, get_downsampling_block, get_upsampling_block, dtype=np.complex64, name="my_own_model",
dropout_dict=None, num_classes=4, weights=None):
# Downsampling
if dropout_dict is None:
dropout_dict = DROPOUT_DEFAULT
pool1, pool1_argmax = get_downsampling_block(in1, 0, dtype=dtype, dropout=dropout_dict["downsampling"]) # Block 1
pool2, pool2_argmax = get_downsampling_block(pool1, 1, dtype=dtype, dropout=dropout_dict["downsampling"]) # Block 2
# Bottleneck
# Block 6
conv6 = ComplexConv2D(hyper_params['kernels'][1], (1, 1),
activation=hyper_params['activation'], padding=hyper_params['padding'],
dtype=dtype)(pool2)
if dropout_dict["bottle_neck"] is not None:
conv6 = ComplexDropout(rate=dropout_dict["bottle_neck"], dtype=dtype)(conv6)
# Upsampling
# Block9
conv7 = get_upsampling_block(conv6, pool2_argmax, hyper_params['kernels'][0], num=4,
activation=hyper_params['activation'],
dropout=dropout_dict["upsampling"], dtype=dtype)
if hyper_params['concat'] == Concatenate:
add11 = Concatenate()([conv7, pool1])
elif hyper_params['concat'] == Add:
add11 = Add()([conv7, pool1])
else:
raise KeyError(f"Concatenation {hyper_params['concat']} not known")
out = get_upsampling_block(add11, pool1_argmax, activation=hyper_params['output_function'], dropout=False, num=0,
kernels=num_classes, dtype=dtype)
if weights is not None:
loss = ComplexWeightedAverageCrossEntropy(weights=weights)
else:
loss = ComplexAverageCrossEntropy()
model = Model(inputs=[in1], outputs=[out], name=name)
model.compile(optimizer=hyper_params['optimizer'](learning_rate=hyper_params['learning_rate']), loss=loss,
metrics=[ComplexCategoricalAccuracy(name='accuracy'),
ComplexAverageAccuracy(name='average_accuracy'),
ComplexPrecision(name='precision'),
ComplexRecall(name='recall')
])
return model
def _get_small_with_tf(in1, get_downsampling_block=_tf_get_downsampling_block,
get_upsampling_block=_get_tf_upsampling_block, name="my_own_model",
dropout_dict=None, num_classes=4, weights=None):
# Downsampling
if dropout_dict is None:
dropout_dict = DROPOUT_DEFAULT
pool1 = get_downsampling_block(in1, 0, dropout=dropout_dict["downsampling"]) # Block 1
pool2 = get_downsampling_block(pool1, 1, dropout=dropout_dict["downsampling"]) # Block 2
# Bottleneck
# Block 6
conv6 = Conv2D(hyper_params['kernels'][4], (1, 1),
activation=tf_hyper_params['activation'], padding=tf_hyper_params['padding'])(pool2)
if dropout_dict["bottle_neck"] is not None:
conv6 = Dropout(rate=dropout_dict["bottle_neck"])(conv6)
# Upsampling
# Block7
conv7 = get_upsampling_block(conv6, tf_hyper_params['kernels'][3], activation=tf_hyper_params['activation'],
dropout=dropout_dict["upsampling"], num=4)
# Block 11
add11 = Concatenate()([conv7, pool1])
out = get_upsampling_block(add11, dropout=False, kernels=num_classes, activation=tf_hyper_params['output_function'],
num=0)
if weights is not None:
print("WARNING: loss function will not be from tensorflow")
loss = ComplexWeightedAverageCrossEntropy(weights=weights)
else:
loss = CategoricalCrossentropy()
model = Model(inputs=[in1], outputs=[out], name=name)
model.compile(optimizer=tf_hyper_params['optimizer'], loss=loss,
metrics=[
CategoricalAccuracy(name='accuracy'),
ComplexCategoricalAccuracy(name='complex_accuracy'),
ComplexAverageAccuracy(name='average_accuracy'),
Precision(name='precision'),
Recall(name='recall')
])
return model
def get_small_unet_model(input_shape=(IMG_HEIGHT, IMG_WIDTH, 3), num_classes=4, dtype=np.complex64,
tensorflow: bool = False,
name="my_model", dropout_dict=None, weights=None, hyper_dict: Optional[Dict] = None):
if hyper_dict is not None:
for key, value in hyper_dict.items():
if key in hyper_params.keys():
hyper_params[key] = value
else:
print(f"WARGNING: parameter {key} is not used")
if dropout_dict is None:
dropout_dict = DROPOUT_DEFAULT
if not tensorflow:
in1 = complex_input(shape=input_shape, dtype=dtype)
return _get_small_model(in1, _get_downsampling_block, _get_upsampling_block, dtype=dtype, name=name,
dropout_dict=dropout_dict, num_classes=num_classes, weights=weights)
else:
in1 = Input(shape=input_shape)
return _get_small_with_tf(in1, _tf_get_downsampling_block, _get_tf_upsampling_block, name="tf_" + name,
dropout_dict=dropout_dict, num_classes=num_classes, weights=weights)